
Piotr Tompalski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5191919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Framework for near real-time forest inventory using multi source remote sensing data. Forestry, 2023, 96, 1-19.	1.2	15
2	Characterizing stream morphological features important for fish habitat using airborne laser scanning data. Remote Sensing of Environment, 2022, 272, 112948.	4.6	6
3	FOSTER—An R package for forest structure extrapolation. PLoS ONE, 2021, 16, e0244846.	1.1	6
4	Estimating Changes in Forest Attributes and Enhancing Growth Projections: a Review of Existing Approaches and Future Directions Using Airborne 3D Point Cloud Data. Current Forestry Reports, 2021, 7, 1-24.	3.4	28
5	Quantifying the precision of forest stand height and canopy cover estimates derived from air photo interpretation. Forestry, 2021, 94, 611-629.	1.2	8
6	Progrès dans l'application de la télédétection pour les besoins en matière d'information sur les fo au Canada : leçons tirées d'une collaboration nationale d'intervenants universitaires, industriels et gouvernementaux. Forestry Chronicle, 2021, 97, 127-147.	orêts 0.5	0
7	Height growth rate of Scots pine in Central Europe increased by 29% between 1900 and 2000 due to changes in site productivity. Forest Ecology and Management, 2021, 490, 119102.	1.4	22
8	Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sensing of Environment, 2021, 260, 112477.	4.6	123
9	Airborne laser scanning for quantifying criteria and indicators of sustainable forest management in Canada. Canadian Journal of Forest Research, 2021, 51, 972-985.	0.8	10
10	Forest Road Status Assessment Using Airborne Laser Scanning. Forest Science, 2020, 66, 501-508.	0.5	6
11	Effect of ground surface interpolation methods on the accuracy of forest attribute modelling using unmanned aerial systems-based digital aerial photogrammetry. International Journal of Remote Sensing, 2020, 41, 3287-3306.	1.3	11
12	lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 2020, 251, 112061.	4.6	366
13	Forest Inventory and Diversity Attribute Modelling Using Structural and Intensity Metrics from Multi-Spectral Airborne Laser Scanning Data. Remote Sensing, 2020, 12, 2109.	1.8	16
14	Digital Terrestrial Photogrammetry to Enhance Field-Based Forest Inventory across Stand Conditions. Canadian Journal of Remote Sensing, 2020, 46, 622-639.	1.1	9
15	Transferability of ALS-Derived Forest Resource Inventory Attributes Between an Eastern and Western Canadian Boreal Forest Mixedwood Site. Canadian Journal of Remote Sensing, 2020, 46, 214-236.	1.1	8
16	Characterizing variations in growth characteristics between Douglas-fir with different genetic gain levels using airborne laser scanning. Trees - Structure and Function, 2020, 34, 649-664.	0.9	15
17	Optimizing Landsat time series length for regional mapping of lidar-derived forest structure. Remote Sensing of Environment, 2020, 239, 111645.	4.6	23
18	Detection of sub-canopy forest structure using airborne LiDAR. Remote Sensing of Environment, 2020, 244, 111770.	4.6	55

PIOTR TOMPALSKI

#	Article	IF	CITATIONS
19	Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest. Scientific Reports, 2020, 10, 6069.	1.6	38
20	Structural development following stand-replacing disturbance in a boreal mixedwood forest. Forest Ecology and Management, 2019, 453, 117586.	1.4	6
21	Fine-Scale Spatial and Spectral Clustering of UAV-Acquired Digital Aerial Photogrammetric (DAP) Point Clouds for Individual Tree Crown Detection and Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 4131-4148.	2.3	17
22	Challenges of Multi-Temporal and Multi-Sensor Forest Growth Analyses in a Highly Disturbed Boreal Mixedwood Forests. Remote Sensing, 2019, 11, 2102.	1.8	16
23	The utility of terrestrial photogrammetry for assessment of tree volume and taper in boreal mixedwood forests. Annals of Forest Science, 2019, 76, 1.	0.8	20
24	Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data. Remote Sensing of Environment, 2019, 227, 110-124.	4.6	56
25	Quantifying the contribution of spectral metrics derived from digital aerial photogrammetry to area-based models of forest inventory attributes. Remote Sensing of Environment, 2019, 234, 111434.	4.6	17
26	Environmental landscape determinants of maximum forest canopy height of boreal forests. Journal of Plant Ecology, 2019, 12, 96-102.	1.2	7
27	Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests. Remote Sensing of Environment, 2018, 208, 1-14.	4.6	75
28	Using airborne laser scanning to predict plant species richness and assess conservation threats in the oil sands region of Alberta's boreal forest. Forest Ecology and Management, 2018, 409, 29-37.	1.4	20
29	Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems. International Journal of Remote Sensing, 2018, 39, 5246-5264.	1.3	62
30	Reply to Vauhkonen: Comment on Tompalski et al. Combining Multi-Date Airborne Laser Scanning and Digital Aerial Photogrammetric Data for Forest Growth and Yield Modelling. Remote Sens. 2018, 10, 347. Remote Sensing, 2018, 10, 1432.	1.8	0
31	Vegetation Phenology Driving Error Variation in Digital Aerial Photogrammetrically Derived Terrain Models. Remote Sensing, 2018, 10, 1554.	1.8	29
32	Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sensing of Environment, 2018, 217, 400-413.	4.6	41
33	Digital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142, 1-11.	4.9	26
34	Enhancing the Estimation of Stem-Size Distributions for Unimodal and Bimodal Stands in a Boreal Mixedwood Forest with Airborne Laser Scanning Data. Forests, 2018, 9, 95.	0.9	20
35	Combining Multi-Date Airborne Laser Scanning and Digital Aerial Photogrammetric Data for Forest Growth and Yield Modelling. Remote Sensing, 2018, 10, 347.	1.8	44
36	Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 2018, 216, 697-714.	4.6	99

PIOTR TOMPALSKI

#	Article	IF	CITATIONS
37	Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data. Ecological Informatics, 2017, 38, 50-61.	2.3	102
38	Characterizing streams and riparian areas with airborne laser scanning data. Remote Sensing of Environment, 2017, 192, 73-86.	4.6	29
39	Area-based estimation of growing stock volume in Scots pine stands using ALS and airborne image-based point clouds. Forestry, 2017, 90, 686-696.	1.2	20
40	Estimating outdoor advertising media visibility with voxel-based approach. Applied Geography, 2017, 87, 1-13.	1.7	24
41	Updating residual stem volume estimates using ALS- and UAV-acquired stereo-photogrammetric point clouds. International Journal of Remote Sensing, 2017, 38, 2938-2953.	1.3	43
42	Unmanned aerial systems for precision forest inventory purposes: A review and case study. Forestry Chronicle, 2017, 93, 71-81.	0.5	126
43	Enhancing Forest Growth and Yield Predictions with Airborne Laser Scanning Data: Increasing Spatial Detail and Optimizing Yield Curve Selection through Template Matching. Forests, 2016, 7, 255.	0.9	27
44	Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Canadian Journal of Remote Sensing, 2016, 42, 619-641.	1.1	493
45	Airborne laser scanning for modelling understory shrub abundance and productivity. Forest Ecology and Management, 2016, 377, 46-54.	1.4	17
46	Measuring visual pollution by outdoor advertisements in an urban street using intervisibilty analysis and public surveys. International Journal of Geographical Information Science, 2016, 30, 801-818.	2.2	50
47	Estimating Forest Site Productivity Using Airborne Laser Scanning Data and Landsat Time Series. Canadian Journal of Remote Sensing, 2015, 41, 232-245.	1.1	22
48	Evaluating the impact of leaf-on and leaf-off airborne laser scanning data on the estimation of forest inventory attributes with the area-based approach. Canadian Journal of Forest Research, 2015, 45, 1498-1513.	0.8	40
49	Augmenting Site Index Estimation with Airborne Laser Scanning Data. Forest Science, 2015, 61, 861-873.	O.5	22
50	Enriching ALS-Derived Area-Based Estimates of Volume through Tree-Level Downscaling. Forests, 2015, 6, 2608-2630.	0.9	22
51	Comparing ALS and Image-Based Point Cloud Metrics and Modelled Forest Inventory Attributes in a Complex Coastal Forest Environment. Forests, 2015, 6, 3704-3732.	0.9	121
52	Land Cover and Landscape Diversity Analysis in the West Polesie Biosphere Reserve. International Agrophysics, 2014, 28, 153-162.	0.7	10
53	Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland). Pure and Applied Geophysics, 2014, 171, 857-866.	0.8	28
54	Simulating the impacts of error in species and height upon tree volume derived from airborne laser scanning data. Forest Ecology and Management, 2014, 327, 167-177.	1.4	43

#	Article	IF	CITATIONS
55	Use of Airborne Laser Scanning Data for a Revision and Update of a Digital Forest Map and its Descriptive Database: A Case Study from the Tatra National Park. Environmental Science and Engineering, 2013, , 615-627.	0.1	3