
Patrick C Fraering

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5191852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of truncated Câ€ŧerminal fragments of the Alzheimer's disease amyloid protein precursor derived from sequential proteolytic pathways. Journal of Neurochemistry, 2021, 156, 943-956.	2.1	1
2	The APMAP interactome reveals new modulators of APP processing and beta-amyloid production that are altered in Alzheimer's disease. Acta Neuropathologica Communications, 2019, 7, 13.	2.4	22
3	The metalloprotease ADAMTS4 generates N-truncated Aβ4–x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease. Acta Neuropathologica, 2019, 137, 239-257.	3.9	44
4	Induction of Amyloid-β42 Production by Fipronil and Other Pyrazole Insecticides. Journal of Alzheimer's Disease, 2018, 62, 1663-1681.	1.2	23
5	Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by γ-Secretase and Amyloid-β Peptide Production. Journal of Biological Chemistry, 2017, 292, 3751-3767.	1.6	64
6	The Alzheimer's Disease γ-Secretase Generates Higher 42:40 Ratios for β-Amyloid Than for p3 Peptides. Cell Reports, 2017, 19, 1967-1976.	2.9	40
7	Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. FASEB Journal, 2017, 31, 1382-1397.	0.2	30
8	Shedding of neurexin 3Î ² ectodomain by ADAM10 releases a soluble fragment that affects the development of newborn neurons. Scientific Reports, 2016, 6, 39310.	1.6	16
9	Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nature Communications, 2016, 7, 13719.	5.8	36
10	The lipidome associated with the \hat{I}^3 -secretase complex is required for its integrity and activity. Biochemical Journal, 2016, 473, 321-334.	1.7	12
11	The FDA-approved natural product dihydroergocristine reduces the production of the Alzheimer's disease amyloid-β peptides. Scientific Reports, 2015, 5, 16541.	1.6	23
12	Production of active glycosylationâ€deficient γâ€secretase complex for crystallization studies. Biotechnology and Bioengineering, 2015, 112, 2516-2526.	1.7	4
13	A Simple and Reliable PDMS and SU-8 Irreversible Bonding Method and Its Application on a Microfluidic-MEA Device for Neuroscience Research. Micromachines, 2015, 6, 1923-1934.	1.4	39
14	The adipocyte differentiation protein APMAP is an endogenous suppressor of AÎ ² production in the brain. Human Molecular Genetics, 2015, 24, 371-382.	1.4	28
15	Detection of Alzheimer's disease amyloid-beta plaque deposition by deep brain impedance profiling. Journal of Neural Engineering, 2015, 12, 024001.	1.8	8
16	Identification of new Presenilinâ€1 phosphosites: implication for γâ€secretase activity and Aβ production. Journal of Neurochemistry, 2015, 133, 409-421.	2.1	11
17	A Compressible Scaffold for Minimally Invasive Delivery of Large Intact Neuronal Networks. Advanced Healthcare Materials, 2015, 4, 301-312.	3.9	69
18	Novel therapeutic strategy for neurodegeneration by blocking AÎ ² seeding mediated aggregation in models of Alzheimer's disease. Neurobiology of Disease, 2015, 74, 144-157.	2.1	26

PATRICK C FRAERING

#	Article	IF	CITATIONS
19	Anti-nicastrin monoclonal antibodies elicit pleiotropic anti-tumour pharmacological effects in invasive breast cancer cells. Breast Cancer Research and Treatment, 2014, 148, 455-462.	1.1	22
20	Perturbations of the Straight Transmembrane α-Helical Structure of the Amyloid Precursor Protein Affect Its Processing by γ-Secretase. Journal of Biological Chemistry, 2014, 289, 6763-6774.	1.6	39
21	Accurate resistivity mouse brain mapping using microelectrode arrays. Biosensors and Bioelectronics, 2014, 60, 143-153.	5.3	8
22	Inactivation of brain Cofilin-1 by age, Alzheimer's disease and Î ³ -secretase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2500-2509.	1.8	50
23	Ferritin H gene deletion in the choroid plexus and forebrain results in hydrocephalus. Neurochemistry International, 2014, 71, 17-21.	1.9	6
24	Alzheimer's disease mutations in APP but not γ-secretase modulators affect epsilon-cleavage-dependent AICD production. Nature Communications, 2013, 4, 2246.	5.8	80
25	Highly efficient production of the Alzheimer's γâ€5ecretase integral membrane protease complex by a multiâ€gene stable integration approach. Biotechnology and Bioengineering, 2013, 110, 1995-2005.	1.7	26
26	The Role of γ-Secretase Activating Protein (GSAP) and Imatinib in the Regulation of γ-Secretase Activity and Amyloid-β Generation. Journal of Biological Chemistry, 2013, 288, 2521-2531.	1.6	42
27	Label-Free Imaging of Cerebral β-Amyloidosis with Extended-Focus Optical Coherence Microscopy. Journal of Neuroscience, 2012, 32, 14548-14556.	1.7	52
28	Discovery of a Novel Pharmacological and Structural Class of Gamma Secretase Modulators Derived from the Extract of Actaea racemosa. ACS Chemical Neuroscience, 2012, 3, 941-951.	1.7	58
29	Generation of Monoclonal Antibody Fragments Binding the Native γ-Secretase Complex for Use in Structural Studies. Biochemistry, 2012, 51, 8779-8790.	1.2	4
30	Selective neutralization of APP-C99 with monoclonal antibodies reduces the production of Alzheimer's Al ² peptides. Neurobiology of Aging, 2012, 33, 2704-2714.	1.5	8
31	Alzheimer's Disease-Linked Mutations in Presenilin-1 Result in a Drastic Loss of Activity in Purified Î ³ -Secretase Complexes. PLoS ONE, 2012, 7, e35133.	1.1	65
32	Mercury is a direct and potent γâ€secretase inhibitor affecting Notch processing and development in Drosophila. FASEB Journal, 2011, 25, 2287-2295.	0.2	28
33	Processing of the Synaptic Cell Adhesion Molecule Neurexin-3β by Alzheimer Disease α- and γ-Secretases. Journal of Biological Chemistry, 2011, 286, 2762-2773.	1.6	70
34	Novel 7â€secretase inhibitors uncover a common nucleotideâ€binding site in JAK3, SIRT2, and PS1. FASEB Journal, 2010, 24, 2464-2474.	0.2	20
35	Cryoelectron Microscopy Structure of Purified Î ³ -Secretase at 12ÂÃ Resolution. Journal of Molecular Biology, 2009, 385, 642-652.	2.0	104
36	Gene Expression Profiling in Cells with Enhanced Î ³ -Secretase Activity. PLoS ONE, 2009, 4, e6952.	1.1	6

PATRICK C FRAERING

#	Article	IF	CITATIONS
37	Substrate-targeting Î ³ -secretase modulators. Nature, 2008, 453, 925-929.	13.7	277
38	Structural and Functional Determinants of γ-Secretase, an Intramembrane Protease Implicated in Alzheimers Disease. Current Genomics, 2007, 8, 531-549.	0.7	24
39	Rapid purification of active γ-secretase, an intramembrane protease implicated in Alzheimer's disease. Journal of Neurochemistry, 2007, 104, 071106212705002-???.	2.1	35
40	Electron microscopic structure of purified, active Â-secretase reveals an aqueous intramembrane chamber and two pores. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6889-6894.	3.3	157
41	γ-Secretase Substrate Selectivity Can Be Modulated Directly via Interaction with a Nucleotide-binding Site*. Journal of Biological Chemistry, 2005, 280, 41987-41996.	1.6	98
42	Gpi17p does not stably interact with other subunits of glycosylphosphatidylinositol transamidase in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 79-88.	1.2	20
43	Detergent-Dependent Dissociation of Active γ-Secretase Reveals an Interaction between Pen-2 and PS1-NTF and Offers a Model for Subunit Organization within the Complex. Biochemistry, 2004, 43, 323-333.	1.2	127
44	Purification and Characterization of the Human γ-Secretase Complexâ€. Biochemistry, 2004, 43, 9774-9789.	1.2	225
45	Assembly of the Î ³ -Secretase Complex Involves Early Formation of an Intermediate Subcomplex of Aph-1 and Nicastrin. Journal of Biological Chemistry, 2003, 278, 37213-37222.	1.6	178
46	The glycosylphosphatidylinositol (GPI) signal sequence of human placental alkaline phosphatase is not recognized by human Gpi8p in the context of the yeast GPI anchoring machinery. Molecular Microbiology, 2002, 46, 745-748.	1.2	6
47	The GPI Transamidase Complex of <i>Saccharomyces cerevisiae</i> Contains Gaa1p, Gpi8p, and Gpi16p. Molecular Biology of the Cell, 2001, 12, 3295-3306.	0.9	102