Agnieszka Bronisz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5191659/publications.pdf Version: 2024-02-01

ACNIESZKA BRONISZ

#	Article	IF	CITATIONS
1	Oncolytic Virus Therapy Alters the Secretome of Targeted Glioblastoma Cells. Cancers, 2021, 13, 1287.	3.7	8
2	Anti-EGFR VHH-armed death receptor ligand–engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Science Advances, 2021, 7, .	10.3	10
3	Pretreatment with mCluR2 or mCluR3 Agonists Reduces Apoptosis Induced by Hypoxia-Ischemia in Neonatal Rat Brains. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	4.0	10
4	Oxidative Stress—Part of the Solution or Part of the Problem in the Hypoxic Environment of a Brain Tumor. Antioxidants, 2020, 9, 747.	5.1	12
5	The nuclear DICER–circular RNA complex drives the deregulation of the glioblastoma cell microRNAome. Science Advances, 2020, 6, .	10.3	31
6	Hypoxic Roadmap of Glioblastoma—Learning about Directions and Distances in the Brain Tumor Environment. Cancers, 2020, 12, 1213.	3.7	10
7	The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nature Communications, 2019, 10, 442.	12.8	86
8	MicroRNA-451 Inhibits Migration of Glioblastoma while Making It More Susceptible to Conventional Therapy. Non-coding RNA, 2019, 5, 25.	2.6	22
9	Statins affect human glioblastoma and other cancers through TGF-Î ² inhibition. Oncotarget, 2019, 10, 1716-1728.	1.8	30
10	Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Science Advances, 2018, 4, eaar2766.	10.3	416
11	Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro-Oncology, 2018, 20, 192-202.	1.2	52
12	Preclinical investigation of combined gene-mediated cytotoxic immunotherapy and immune checkpoint blockade in glioblastoma. Neuro-Oncology, 2018, 20, 225-235.	1.2	61
13	Combined c-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors in Glioblastoma. Cancer Research, 2018, 78, 4360-4369.	0.9	46
14	The activation of group II metabotropic glutamate receptors protects neonatal rat brains from oxidative stress injury after hypoxia-ischemia. PLoS ONE, 2018, 13, e0200933.	2.5	20
15	A PDGFRα-driven mouse model of glioblastoma reveals a stathmin1-mediated mechanism of sensitivity to vinblastine. Nature Communications, 2018, 9, 3116.	12.8	30
16	MicroRNA Signatures and Molecular Subtypes of Glioblastoma: The Role of Extracellular Transfer. Stem Cell Reports, 2017, 8, 1497-1505.	4.8	58
17	MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells. Cell Reports, 2017, 19, 2026-2032.	6.4	33
18	Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clinical Cancer Research, 2017, 23, 6958-6968.	7.0	74

Agnieszka Bronisz

#	Article	IF	CITATIONS
19	P06.07 Immune evasion mediated by PD-L1 on glioblastoma derived extracellular vesicles. Neuro-Oncology, 2017, 19, iii50-iii50.	1.2	2
20	CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget, 2017, 8, 55319-55331.	1.8	39
21	CBIO-12. SIX EXTRACELLULAR VESICLE RELATED GENES CAN EXPLAIN THE PRO-TUMORIGENIC BEHAVIOR OF HETEROGENEOUS HIGH GRADE GLIOMAS. Neuro-Oncology, 2016, 18, vi37-vi37.	1.2	0
22	Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Research, 2016, 76, 2876-2881.	0.9	85
23	The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Reports, 2016, 15, 2500-2509.	6.4	156
24	The role of octamer binding transcription factors in glioblastoma multiforme. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 805-811.	1.9	13
25	Failure to Target RANKL Signaling Through p38â€MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudyâ€Eyed Mutant. Journal of Cellular Physiology, 2016, 231, 630-640.	4.1	7
26	Extracellular Vesicles and MicroRNAs: Their Role in Tumorigenicity and Therapy for Brain Tumors. Cellular and Molecular Neurobiology, 2016, 36, 361-376.	3.3	36
27	A cross-talk network that facilitates tumor virotherapy. Nature Medicine, 2015, 21, 426-427.	30.7	1
28	Glucose-Based Regulation of miR-451/AMPK Signaling Depends on the OCT1 Transcription Factor. Cell Reports, 2015, 11, 902-909.	6.4	50
29	Belonging to a network—microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro-Oncology, 2015, 17, 652-662.	1.2	78
30	Response to energy depletion: miR-451/AMPK loop. Oncotarget, 2015, 6, 17851-17852.	1.8	7
31	The Multifunctional Protein Fused in Sarcoma (FUS) Is a Coactivator of Microphthalmia-associated Transcription Factor (MITF). Journal of Biological Chemistry, 2014, 289, 326-334.	3.4	21
32	Extracellular Vesicles Modulate the Glioblastoma Microenvironment via a Tumor Suppression Signaling Network Directed by miR-1. Cancer Research, 2014, 74, 738-750.	0.9	197
33	MicroRNA 17-92 Cluster Mediates ETS1 and ETS2-Dependent RAS-Oncogenic Transformation. PLoS ONE, 2014, 9, e100693.	2.5	19
34	MEK-1 activates C-Raf through a Ras-independent mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 976-986.	4.1	14
35	<i>SRGAP1</i> Is a Candidate Gene for Papillary Thyroid Carcinoma Susceptibility. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E973-E980.	3.6	74
36	MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro-Oncology, 2013, 15, 1212-1224.	1.2	104

Agnieszka Bronisz

#	Article	IF	CITATIONS
37	Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nature Cell Biology, 2012, 14, 159-167.	10.3	251
38	microRNA-451: A conditional switch controlling glioma cell proliferation and migration. Cell Cycle, 2010, 9, 2814-2820.	2.6	181
39	MicroRNA-451 Regulates LKB1/AMPK Signaling and Allows Adaptation to Metabolic Stress in Glioma Cells. Molecular Cell, 2010, 37, 620-632.	9.7	382
40	microRNA-451: A conditional switch controlling glioma cell proliferation and migration. Cell Cycle, 2010, 9, 2742-8.	2.6	88
41	Targeting of the Bmi-1 Oncogene/Stem Cell Renewal Factor by MicroRNA-128 Inhibits Glioma Proliferation and Self-Renewal. Cancer Research, 2008, 68, 9125-9130.	0.9	670
42	The Ewing Sarcoma Protein (EWS) Binds Directly to the Proximal Elements of the Macrophage-Specific Promoter of the CSF-1 Receptor (csf1r) Gene. Journal of Immunology, 2008, 180, 6733-6742.	0.8	23
43	MITF and PU.1 Recruit p38 MAPK and NFATc1 to Target Genes during Osteoclast Differentiation. Journal of Biological Chemistry, 2007, 282, 15921-15929.	3.4	155
44	Eos, MITF, and PU.1 Recruit Corepressors to Osteoclast-Specific Genes in Committed Myeloid Progenitors. Molecular and Cellular Biology, 2007, 27, 4018-4027.	2.3	78
45	Microphthalmia-associated Transcription Factor Interactions with 14-3-3 Modulate Differentiation of Committed Myeloid Precursors. Molecular Biology of the Cell, 2006, 17, 3897-3906.	2.1	66
46	Genetics and Genomics of Osteoclast Differentiation: Integrating Cell Signaling Pathways and Gene Networks. Critical Reviews in Eukaryotic Gene Expression, 2006, 16, 253-278.	0.9	9
47	Identification of Raf-1 S471 as a Novel Phosphorylation Site Critical for Raf-1 and B-Raf Kinase Activities and for MEK Binding. Molecular Biology of the Cell, 2005, 16, 4733-4744.	2.1	33
48	Significance of 14-3-3 Self-Dimerization for Phosphorylation-dependent Target Binding. Molecular Biology of the Cell, 2003, 14, 4721-4733.	2.1	105
49	Fusion Tyrosine Kinases Induce Drug Resistance by Stimulation of Homology-Dependent Recombination Repair, Prolongation of G 2 /M Phase, and Protection from Apoptosis. Molecular and Cellular Biology, 2002, 22, 4189-4201.	2.3	188
50	PKC and Raf-1 inhibition-related apoptotic signalling in N2a cells. Journal of Neurochemistry, 2002, 81, 1176-1184.	3.9	17
51	AP1 transcriptional factor activation and its relation to apoptosis of hippocampal CA1 pyramidal neurons after transient ischemia in gerbils. Journal of Neuroscience Research, 1999, 57, 840-846.	2.9	27