Pablo Cubillas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5191059/publications.pdf Version: 2024-02-01

DARIO CURILLAS

#	Article	IF	CITATIONS
1	Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation. Rock Mechanics and Rock Engineering, 2021, 54, 303-320.	5.4	40
2	<i>CrystalGrower</i> : a generic computer program for Monte Carlo modelling of crystal growth. Chemical Science, 2021, 12, 1126-1146.	7.4	18
3	Effect of Diagenesis on Geomechanical Properties of Organicâ€Rich Calcareous Shale: A Multiscale Investigation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021365.	3.4	16
4	Assessment of the elastic response of shale using multiscale mechanical testing and homogenisation. E3S Web of Conferences, 2020, 205, 04013.	0.5	0
5	A New Framework to Quantify the Wetting Behaviour of Carbonate Rock Surfaces Based on the Relationship between Zeta Potential and Contact Angle. Energies, 2020, 13, 993.	3.1	12
6	Assessment of the potential for in-plume sulphur dioxide gas-ash interactions to influence the respiratory toxicity of volcanic ash. Environmental Research, 2019, 179, 108798.	7.5	12
7	Geomechanical Characterisation of Posidonia Shale Using Nanomechanical Testing. , 2019, , .		1
8	Predicting the elastic response of organicâ€rich shale using nanoscale measurements and homogenisation methods. Geophysical Prospecting, 2017, 65, 1597-1614.	1.9	38
9	Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature, 2017, 544, 456-459.	27.8	88
10	Multi-technique approach to the petrophysical characterization of Berea sandstone core plugs (Cleveland Quarries, USA). Journal of Petroleum Science and Engineering, 2017, 149, 436-455.	4.2	36
11	Chemical Force Microscopy Study on the Interactions of COOH Functional Groups with Kaolinite Surfaces: Implications for Enhanced Oil Recovery. Minerals (Basel, Switzerland), 2017, 7, 250.	2.0	4
12	Strontium incorporation during calcite growth: Implications for chemical mapping using friction force microscopy. Chemical Geology, 2015, 411, 274-282.	3.3	4
13	Molecular Dynamic Simulations of Montmorillonite–Organic Interactions under Varying Salinity: An Insight into Enhanced Oil Recovery. Journal of Physical Chemistry C, 2015, 119, 7282-7294.	3.1	100
14	Crystal growth of MOF-5 using secondary building units studied by in situ atomic force microscopy. CrystEngComm, 2014, 16, 9834-9841.	2.6	24
15	Atomic Force Microscopy and High Resolution Scanning Electron Microscopy Investigation of Zeolite A Crystal Growth. Part 2: In Presence of Organic Additives. Journal of Physical Chemistry C, 2014, 118, 23092-23099.	3.1	7
16	Influence of Isomorphous Substituting Cobalt Ions on the Crystal Growth of the MOF-5 Framework Determined by Atomic Force Microscopy of Growing Core–Shell Crystals. Crystal Growth and Design, 2013, 13, 4526-4532.	3.0	21
17	Materials Discovery and Crystal Growth of Zeoliteâ€A Type Zeolitic–Imidazolate Frameworks Revealed by Atomic Force Microscopy. Chemistry - A European Journal, 2013, 19, 8236-8243.	3.3	24
18	Crystal Growth Mechanisms and Morphological Control of the Prototypical Metal–Organic Framework MOFâ€5 Revealed by Atomic Force Microscopy. Chemistry - A European Journal, 2012, 18, 15406-15415.	3.3	75

PABLO CUBILLAS

#	Article	IF	CITATIONS
19	Growth Mechanism of Microporous Zincophosphate Sodalite Revealed by In Situ Atomic Force Microscopy. Journal of the American Chemical Society, 2012, 134, 13066-13073.	13.7	28
20	Crystal growth of nanoporous metal organic frameworks. Dalton Transactions, 2012, 41, 3869-3878.	3.3	41
21	AFM and HRSEM Invesitigation of Zeolite A Crystal Growth. Part 1: In the Absence of Organic Additives. Journal of Physical Chemistry C, 2011, 115, 12567-12574.	3.1	24
22	Crystal Growth Studies on Microporous Zincophosphate-Faujasite Using Atomic Force Microscopy. Crystal Growth and Design, 2011, 11, 3163-3171.	3.0	12
23	Revelation of the Molecular Assembly of the Nanoporous Metal Organic Framework ZIF-8. Journal of the American Chemical Society, 2011, 133, 13304-13307.	13.7	142
24	Hierarchical porous materials: Internal structure revealed by argon ion-beam cross-section polishing, HRSEM and AFM. Solid State Sciences, 2011, 13, 745-749.	3.2	9
25	The Porosity, Acidity, and Reactivity of Dealuminated Zeolite ZSMâ€5 at the Single Particle Level: The Influence of the Zeolite Architecture. Chemistry - A European Journal, 2011, 17, 13773-13781.	3.3	94
26	Unstitching the Nanoscopic Mystery of Zeolite Crystal Formation. Journal of the American Chemical Society, 2010, 132, 13858-13868.	13.7	39
27	Unified Internal Architecture and Surface Barriers for Molecular Diffusion of Microporous Crystalline Aluminophosphates. Angewandte Chemie - International Edition, 2010, 49, 6790-6794.	13.8	23
28	Assessing Molecular Transport Properties of Nanoporous Materials by Interference Microscopy: Remarkable Effects of Composition and Microstructure on Diffusion in the Silicoaluminophosphate Zeotype STA-7. Journal of the American Chemical Society, 2010, 132, 11665-11670.	13.7	36
29	Properties of Ca-Rich and Mg-Rich Carbonate Films on Dolomite: Implications for Compositional Surface Mapping with Scanning Force Microscopy. Langmuir, 2010, 26, 4769-4775.	3.5	7
30	Growth Mechanisms in SAPO-34 Studied by White Light Interferometry and Atomic Force Microscopy. Crystal Growth and Design, 2010, 10, 2824-2828.	3.0	17
31	In situ crystal growth of nanoporous zincophosphate observed by atomic force microscopy. Chemical Communications, 2010, 46, 1047.	4.1	15
32	Friction characteristics of Cd-rich carbonate films on calcite surfaces: implications for compositional differentiation at the nanometer scale. Geochemical Transactions, 2009, 10, 7.	0.7	19
33	Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nature Materials, 2009, 8, 959-965.	27.5	251
34	Nanoscale Electron Beam Damage Studied by Atomic Force Microscopy. Journal of Physical Chemistry C, 2009, 113, 18441-18443.	3.1	6
35	Spiral Growth on Nanoporous Silicoaluminophosphate STA-7 as Observed by Atomic Force Microscopy. Crystal Growth and Design, 2009, 9, 4041-4050.	3.0	24
36	Synthesis and characterization of hierarchical porous materials incorporating a cubic mesoporous phase. Journal of Materials Chemistry, 2008, 18, 4985.	6.7	34

PABLO CUBILLAS

#	Article	IF	CITATIONS
37	Nanometre resolution using high-resolution scanning electron microscopy corroborated by atomic force microscopy. Chemical Communications, 2008, , 3894.	4.1	13
38	High-Resolution scanning electron and atomic force microscopies: observation of nanometer features on zeolite Surfaces. Studies in Surface Science and Catalysis, 2008, 174, 775-780.	1.5	4
39	Modelling crystal growth in zeolite A. Studies in Surface Science and Catalysis, 2008, 174, 705-708.	1.5	4
40	Removal of Cadmium from Wastewaters by Aragonite Shells and the Influence of Other Divalent Cations. Environmental Science & Technology, 2007, 41, 112-118.	10.0	114
41	How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution—CdCO3 precipitation. Geochimica Et Cosmochimica Acta, 2005, 69, 5459-5476.	3.9	109
42	Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chemical Geology, 2005, 216, 59-77.	3.3	144
43	Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochimica Et Cosmochimica Acta, 2003, 67, 3859-3869.	3.9	131