Seung Hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5190942/publications.pdf

Version: 2024-02-01

17 papers	1,708 citations	932766 10 h-index	1199166 12 g-index
18	18	18	1762
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Memristors Based on (Zr, Hf, Nb, Ta, Mo, W) Highâ€Entropy Oxides. Advanced Electronic Materials, 2021, 7, 2001258.	2.6	22
2	A Fully Integrated Reprogrammable CMOS-RRAM Compute-in-Memory Coprocessor for Neuromorphic Applications. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 36-44.	1.1	20
3	Quantitative, Dynamic TaO _{<i>x</i>} Memristor/Resistive Random Access Memory Model. ACS Applied Electronic Materials, 2020, 2, 701-709.	2.0	38
4	Nanoscale resistive switching devices for memory and computing applications. Nano Research, 2020, 13, 1228-1243.	5 . 8	91
5	Deep Neural Network Mapping and Performance Analysis on Tiled RRAM Architecture. , 2020, , .		2
6	A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nature Electronics, 2019, 2, 290-299.	13.1	469
7	Temporal data classification and forecasting using a memristor-based reservoir computing system. Nature Electronics, 2019, 2, 480-487.	13.1	309
8	Nanoionic Resistiveâ€6witching Devices. Advanced Electronic Materials, 2019, 5, 1900184.	2.6	41
9	A Deep Neural Network Accelerator Based on Tiled RRAM Architecture. , 2019, , .		46
10	Reservoir computing using dynamic memristors for temporal information processing. Nature Communications, 2017, 8, 2204.	5.8	547
11	Growth models of coexisting $\langle i \rangle p \langle i \rangle (2 \tilde{A} - 1)$ and $\langle i \rangle c \langle i \rangle (6 \tilde{A} - 2)$ phases on an oxygen-terminated Cu(110) surface studied by noncontact atomic force microscopy at 78 K. Nanotechnology, 2016, 27, 205702.	1.3	2
12	Image formation and contrast inversion in noncontact atomic force microscopy imaging of oxidized $\text{Cu}(110)$ surfaces. Physical Review B, 2014, 90, .	1.1	8
13	Vertical atomic manipulation with dynamic atomic-force microscopy without tip change via a multi-step mechanism. Nature Communications, 2014, 5, 4476.	5.8	32
14	Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on transition metal oxides for high density memory applications. , 2012 , , .		41
15	Chemical tip fingerprinting in scanning probe microscopy of an oxidized Cu(110) surface. Physical Review B, 2012, 86, .	1.1	21
16	The Effect of Tunnel Barrier at Resistive Switching Device for Low Power Memory Applications. , 2011, , .		10
17	Vertical double gate Z-RAM technology with remarkable low voltage operation for DRAM application. , 2010, , .		8