
Francesca Bianchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5190839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. Journal of Experimental Medicine, 2005, 201, 713-722.	4.2	829
2	Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness. Cancer Research, 2010, 70, 6945-6956.	0.4	493
3	Cancer Associated Fibroblasts Exploit Reactive Oxygen Species Through a Proinflammatory Signature Leading to Epithelial Mesenchymal Transition and Stemness. Antioxidants and Redox Signaling, 2011, 14, 2361-2371.	2.5	186
4	Extracellular acidity, a "reappreciated―trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer and Metastasis Reviews, 2014, 33, 823-832.	2.7	150
5	HIF-1α stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radical Biology and Medicine, 2011, 51, 893-904.	1.3	146
6	EphA2 Reexpression Prompts Invasion of Melanoma Cells Shifting from Mesenchymal to Amoeboid-like Motility Style. Cancer Research, 2009, 69, 2072-2081.	0.4	120
7	Kinase-Dependent and -Independent Roles of EphA2 in the Regulation of Prostate Cancer Invasion and Metastasis. American Journal of Pathology, 2009, 174, 1492-1503.	1.9	96
8	The acidic microenvironment as a possible niche of dormant tumor cells. Cellular and Molecular Life Sciences, 2017, 74, 2761-2771.	2.4	86
9	Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs OXPHOS and prostate cancer metastatic spread. Oncotarget, 2015, 6, 24061-24074.	0.8	84
10	Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clinical and Experimental Metastasis, 2014, 31, 423-433.	1.7	81
11	Oleuropein, the Main Polyphenol of Olea europaea Leaf Extract, Has an Anti-Cancer Effect on Human BRAF Melanoma Cells and Potentiates the Cytotoxicity of Current Chemotherapies. Nutrients, 2018, 10, 1950.	1.7	79
12	Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis. Journal of Molecular Medicine, 2017, 95, 1341-1353.	1.7	76
13	The carbonic anhydrase IX inhibitor SLC-0111 sensitises cancer cells to conventional chemotherapy. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 117-123.	2.5	74
14	Endothelial progenitor cell–dependent angiogenesis requires localization of the full-length form of uPAR in caveolae. Blood, 2011, 118, 3743-3755.	0.6	70
15	EphA2 Induces Metastatic Growth Regulating Amoeboid Motility and Clonogenic Potential in Prostate Carcinoma Cells. Molecular Cancer Research, 2011, 9, 149-160.	1.5	63
16	The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells. Journal of Molecular Medicine, 2020, 98, 1431-1446.	1.7	58
17	Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis, 2014, 17, 881-896.	3.7	55
18	Effects of n-3 polyunsaturated fatty acids on malignant ventricular arrhythmias in patients with chronic heart failure and implantable cardioverter-defibrillators: A substudy of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Insufficienza Cardiaca (GISSI-HF) trial. American Heart Journal, 2011, 161, 338-343.e1.	1.2	53

#	Article	IF	CITATIONS
19	Lactate Rewires Lipid Metabolism and Sustains a Metabolic–Epigenetic Axis in Prostate Cancer. Cancer Research, 2022, 82, 1267-1282.	0.4	52
20	Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors. Human Pathology, 2007, 38, 1516-1525.	1.1	50
21	Click-Chemistry-Derived Triazole Ligands of Arginineâ^'Glycineâ^'Aspartate (RGD) Integrins with a Broad Capacity To Inhibit Adhesion of Melanoma Cells and Both in Vitro and in Vivo Angiogenesis. Journal of Medicinal Chemistry, 2010, 53, 7119-7128.	2.9	49
22	Acidic pH via NF-Î⁰B favours VEGF-C expression in human melanoma cells. Clinical and Experimental Metastasis, 2013, 30, 957-967.	1.7	49
23	Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation. Cell Cycle, 2016, 15, 1908-1918.	1.3	49
24	β ₃ â€Adrenoceptor as a potential immunoâ€suppressor agent in melanoma. British Journal of Pharmacology, 2019, 176, 2509-2524.	2.7	49
25	The metabolically-modulated stem cell niche: a dynamic scenario regulating cancer cell phenotype and resistance to therapy. Cell Cycle, 2014, 13, 3169-3175.	1.3	48
26	Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression. Cell Cycle, 2015, 14, 3088-3100.	1.3	47
27	Environmental control of invasiveness and metastatic dissemination of tumor cells: the role of tumor cell-host cell interactions. Cell Communication and Signaling, 2010, 8, 24.	2.7	45
28	Tumoral and macrophage uPAR and MMP-9 contribute to the invasiveness of B16 murine melanoma cells. Clinical and Experimental Metastasis, 2008, 25, 225-231.	1.7	44
29	Expression of cyclo-oxygenase-2 in macrophages associated with cutaneous melanoma at different stages of progression. Prostaglandins and Other Lipid Mediators, 2007, 83, 320-328.	1.0	42
30	Modulation of the angiogenic phenotype of normal and systemic sclerosis endothelial cells by gain–loss of function of pentraxin 3 and matrix metalloproteinase 12. Arthritis and Rheumatism, 2010, 62, 2488-2498.	6.7	42
31	uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells. International Journal of Cancer, 2017, 141, 1190-1200.	2.3	40
32	Inhibition of uPAR-TGFβ crosstalk blocks MSC-dependent EMT in melanoma cells. Journal of Molecular Medicine, 2015, 93, 783-794.	1.7	39
33	CD63 Tetraspanin Is a Negative Driver of Epithelial-to-Mesenchymal Transition in Human Melanoma Cells. Journal of Investigative Dermatology, 2014, 134, 2947-2956.	0.3	38
34	uPAR-expressing melanoma exosomes promote angiogenesis by VE-Cadherin, EGFR and uPAR overexpression and rise of ERK1,2 signaling in endothelial cells. Cellular and Molecular Life Sciences, 2021, 78, 3057-3072.	2.4	38
35	EphA2-mediated mesenchymal–amoeboid transition induced by endothelial progenitor cells enhances metastatic spread due to cancer-associated fibroblasts. Journal of Molecular Medicine, 2013, 91, 103-115.	1.7	37
36	Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme. Oncotarget, 2014, 5, 3711-3727.	0.8	37

#	Article	lF	CITATIONS
37	Synthesis of Novel c(AmpRGD)–Sunitinib Dual Conjugates as Molecular Tools Targeting the α _v β ₃ Integrin/VEGFR2 Couple and Impairing Tumor-Associated Angiogenesis. Journal of Medicinal Chemistry, 2017, 60, 248-262.	2.9	36
38	Everolimus selectively targets vemurafenib resistant BRAFV600E melanoma cells adapted to low pH. Cancer Letters, 2017, 408, 43-54.	3.2	36
39	<i>²</i> 3-Adrenoreceptors Control Mitochondrial Dormancy in Melanoma and Embryonic Stem Cells. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	1.9	34
40	Cancer Glycolytic Dependence as a New Target of Olive Leaf Extract. Cancers, 2020, 12, 317.	1.7	34
41	Inflammatory cytokines induce vascular endothelial growth factor-C expression in melanoma-associated macrophages and stimulate melanoma lymph node metastasis. Oncology Letters, 2014, 8, 1133-1138.	0.8	33
42	Systemic Sclerosis-Endothelial Cell Antiangiogenic Pentraxin 3 and Matrix Metalloprotease 12 Control Human Breast Cancer Tumor Vascularization and Development in Mice. Neoplasia, 2009, 11, 1106-1115.	2.3	32
43	GDF5 Regulates TGFß-Dependent Angiogenesis in Breast Carcinoma MCF-7 Cells: In Vitro and In Vivo Control by Anti-TGFß Peptides. PLoS ONE, 2012, 7, e50342.	1.1	31
44	Cell-targeted c(AmpRGD)-sunitinib molecular conjugates impair tumor growth of melanoma. Cancer Letters, 2019, 446, 25-37.	3.2	28
45	Desmoglein-2-Integrin Beta-8 Interaction Regulates Actin Assembly in Endothelial Cells: Deregulation in Systemic Sclerosis. PLoS ONE, 2013, 8, e68117.	1.1	27
46	SOX2 as a novel contributor of oxidative metabolism in melanoma cells. Cell Communication and Signaling, 2018, 16, 87.	2.7	27
47	¹²⁵ I-Radiolabeled Morpholine-Containing Arginine–Glycine–Aspartate (RGD) Ligand of α _v l² ₃ Integrin As a Molecular Imaging Probe for Angiogenesis. Journal of Medicinal Chemistry, 2012, 55, 5024-5033.	2.9	26
48	22Â:Â6 <i>n</i> -3 DHA inhibits differentiation of prostate fibroblasts into myofibroblasts and tumorigenesis. British Journal of Nutrition, 2012, 108, 2129-2137.	1.2	23
49	Anoikis Resistance as a Further Trait of Acidic-Adapted Melanoma Cells. Journal of Oncology, 2019, 2019, 1-13.	0.6	23
50	The Carbonic Anhydrase IX inhibitor SLC-0111 as emerging agent against the mesenchymal stem cell-derived pro-survival effects on melanoma cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1185-1193.	2.5	23
51	FDG uptake in cancer: a continuing debate. Theranostics, 2020, 10, 2944-2948.	4.6	22
52	Integrin-targeted AmpRGD sunitinib liposomes as integrated antiangiogenic tools. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 135-145.	1.7	21
53	Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits. Oncotarget, 2016, 7, 51138-51149.	0.8	21
54	<scp>M</scp> arie <scp>M</scp> énard apples with high polyphenol content and a lowâ€fat diet reduce 1,2â€dimethylhydrazineâ€induced colon carcinogenesis in rats: Effects on inflammation and apoptosis. Molecular Nutrition and Food Research, 2012, 56, 1353-1357.	1.5	20

#	Article	IF	CITATIONS
55	Tumor-tropic endothelial colony forming cells (ECFCs) loaded with near-infrared sensitive Au nanoparticles: A "cellular stove―approach to the photoablation of melanoma. Oncotarget, 2016, 7, 39846-39860.	0.8	20
56	A potentiated cooperation of carbonic anhydrase IX and histone deacetylase inhibitors against cancer. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 391-397.	2.5	19
57	β3-Adrenoreceptor Blockade Induces Stem Cells Differentiation in Melanoma Microenvironment. International Journal of Molecular Sciences, 2020, 21, 1420.	1.8	19
58	Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts. Journal of Molecular Medicine, 2015, 93, 1145-1157.	1.7	18
59	Cytokine-dependent invasiveness in B16 murine melanoma cells: role of uPA system and MMP-9. Oncology Reports, 2006, 15, 709-14.	1.2	18
60	Cyclopropane Pipecolic Acids as Templates for Linear and Cyclic Peptidomimetics: Application in the Synthesis of an Argâ€Glyâ€Asp (RGD)â€Containing Peptide as an α _v l̂2 ₃ Integrin Ligand Chemistry - A European Journal, 2014, 20, 11187-11203.	. 1.7	17
61	Gold Nanoparticles Functionalized with RGD‣emipeptides: A Simple yet Highly Effective Targeting System for α _V l² ₃ Integrins. Chemistry - A European Journal, 2018, 24, 12093-12100.	1.7	17
62	Glycolysis-derived acidic microenvironment as a driver of endothelial dysfunction in systemic sclerosis. Rheumatology, 2021, 60, 4508-4519.	0.9	16
63	Oleuropein-Rich Leaf Extract as a Broad Inhibitor of Tumour and Macrophage iNOS in an Apc Mutant Rat Model. Antioxidants, 2021, 10, 1577.	2.2	16
64	Cyclic RGD peptidomimetics containing 4- and 5-amino-cyclopropane pipecolic acid (CPA) templates as dual αVβ3 and α5β1 integrin ligands. Bioorganic and Medicinal Chemistry, 2016, 24, 703-711.	1.4	14
65	Synthesis and conformational analysis of peptides embodying 2,3-methanopipecolic acids. Organic and Biomolecular Chemistry, 2017, 15, 6826-6836.	1.5	14
66	Identification of highly potent and selective MMP2 inhibitors addressing the S1′ subsite with d-proline-based compounds. Bioorganic and Medicinal Chemistry, 2019, 27, 1891-1902.	1.4	13
67	Radiosynthesis and micro-SPECT analysis of triazole-based RCD integrin ligands as non-peptide molecular imaging probes for angiogenesis. Bioorganic and Medicinal Chemistry, 2015, 23, 1112-1122.	1.4	12
68	Enhanced Antitumoral Activity and Photoacoustic Imaging Properties of AuNPâ€Enriched Endothelial Colony Forming Cells on Melanoma. Advanced Science, 2021, 8, 2001175.	5.6	12
69	Synthesis and preclinical evaluation of a novel, selective ¹¹¹ In-labelled aminoproline-RGD-peptide for non-invasive melanoma tumor imaging. MedChemComm, 2015, 6, 2175-2183.	3.5	11
70	CRISPR/Cas9 uPAR Gene Knockout Results in Tumor Growth Inhibition, EGFR Downregulation and Induction of Stemness Markers in Melanoma and Colon Carcinoma Cell Lines. Frontiers in Oncology, 2021, 11, 663225.	1.3	11
71	Enhancement of Nitric Oxide Release in Mouse Inflammatory Macrophages Co-cultivated with Tumor Cells of a Different Origin. Clinical and Experimental Metastasis, 2005, 22, 413-419.	1.7	10
72	Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells. Molecular and Cellular Biochemistry, 2017, 424, 99-110.	1.4	10

FRANCESCA BIANCHINI

#	Article	IF	CITATIONS
73	Acidity of Microenvironment as a Further Driver of Tumor Metabolic Reprogramming. Journal of Clinical & Cellular Immunology, 2017, 08, .	1.5	10
74	uPAR Controls Vasculogenic Mimicry Ability Expressed by Drug-Resistant Melanoma Cells. Oncology Research, 2021, 28, 873-884.	0.6	10
75	IFNgamma and TNFalpha account for a pro-clonogenic activity secreted by activated murine peritoneal macrophages. Clinical and Experimental Metastasis, 2002, 19, 259-264.	1.7	9
76	Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma. Journal of Molecular Medicine, 2017, 95, 97-108.	1.7	9
77	Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach. Oncoscience, 2015, 2, 225-232.	0.9	9
78	The change in leukotrienes and lipoxins in activated mouse peritoneal macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1484, 87-92.	1.2	8
79	A study of ad-proline peptidomimetic inhibitor of melanoma and endothelial cell invasion through activity towards MMP-2 and MMP-9. MedChemComm, 2015, 6, 277-282.	3.5	7
80	Cytokine-dependent invasiveness in B16 murine melanoma cells: Role of uPA system and MMP-9. Oncology Reports, 0, , .	1.2	7
81	Biological properties associated with the enhanced lung-colonizing potential in a B16 murine melanoma line grown in a medium conditioned by syngeneic Corynebacterium parvum-elicited macrophages. Clinical and Experimental Metastasis, 1999, 17, 889-895.	1.7	6
82	Combination of click chemistry and sulfonamides to develop three-armed triazole compounds. Tetrahedron, 2014, 70, 5439-5449.	1.0	6
83	Synthesis and biological studies of c(RGDyK) conjugates of cucurbitacins. Future Medicinal Chemistry, 2021, 13, 877-895.	1.1	6
84	Integrin-Mediated Targeted Cancer Therapy Using c(RGDyK)-Based Conjugates of Gemcitabine. Journal of Medicinal Chemistry, 2022, 65, 271-284.	2.9	6
85	Nintedanib-Containing Dual Conjugates Targeting α _V β ₆ Integrin and Tyrosine Kinase Receptors as Potential Antifibrotic Agents. ACS Omega, 2022, 7, 17658-17669.	1.6	6
86	Inhibition of lipoxygenase pathway in macrophages co-cultivated with tumor cells. Cancer Letters, 2005, 223, 151-158.	3.2	5
87	Metabolic reprogramming as a continuous changing behavior of tumor cells. Tumor Biology, 2015, 36, 5759-5762.	0.8	5
88	Potential Role of HLA Class I Antigens in the Glycolytic Metabolism and Motility of Melanoma Cells. Cancers, 2019, 11, 1249.	1.7	5
89	Expression of a metastatic phenotype in IFNs-primed/TNFα-activated B16 murine melanoma cells: role of JAK1/PKCδ signal transduction factors. Clinical and Experimental Metastasis, 2006, 23, 203-208.	1.7	4
90	Stereodivergent synthesis of 5-aminopipecolic acids and application in the preparation of a cyclic RGD peptidomimetic as a nanomolar α _V β ₃ integrin ligand. Organic and Biomolecular Chemistry, 2018, 16, 3402-3414.	1.5	4

#	Article	IF	CITATIONS
91	New 4-Aminoproline-Based Small Molecule Cyclopeptidomimetics as Potential Modulators of α4β1 Integrin. Molecules, 2021, 26, 6066.	1.7	3
92	Identification of a Common Pharmacophore for Binding to MMP2 and RGD Integrin: Towards a Multitarget Approach to Inhibit Cancer Angiogenesis and Metastasis. Molecules, 2022, 27, 1249.	1.7	3
93	Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library. Molecules, 2016, 21, 1405.	1.7	2
94	Enantioselective Synthesis of <i>cis</i> and <i>trans</i> 4â€Aminopipecolic Acids as γâ€Amino Acids for the Construction of Cyclic RGDâ€Containing Peptidomimetics Antagonists of α _V β ₃ Integrin. European Journal of Organic Chemistry, 2020, 2020, 4371-4383.	1.2	1
95	Modular synthesis of 2,4-diaminoanilines as CNS drug-like non-covalent inhibitors of asparagine endopeptidase. Bioorganic and Medicinal Chemistry, 2022, 63, 116746.	1.4	1
96	Design, synthesis and evaluation of RGD peptidomimetic – Gold nanostar conjugates as M21 cell adhesion inhibitors. Bioorganic Chemistry, 2022, 126, 105873.	2.0	0