
Francisco R Tadeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5190837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32, 656-662.	17.5	572
2	Genomics of the origin and evolution of Citrus. Nature, 2018, 554, 311-316.	27.8	552
3	The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 2001, 111, 206-211.	5.2	497
4	Physiology of citrus fruiting. Brazilian Journal of Plant Physiology, 2007, 19, 333-362.	0.5	240
5	Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiologia Plantarum, 2002, 116, 563-572.	5.2	239
6	Elucidating mechanisms underlying organ abscission. Plant Science, 2013, 199-200, 48-60.	3.6	208
7	Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots. Plant Physiology, 1996, 112, 401-408.	4.8	187
8	Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta, 2000, 210, 636-643.	3.2	168
9	Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Journal of Experimental Botany, 2011, 62, 2507-2519.	4.8	146
10	Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiologia Plantarum, 1998, 103, 475-484.	5.2	132
11	Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations. Plant, Cell and Environment, 1998, 21, 1243-1253.	5.7	121
12	In vivo sucrose stimulation of colour change in citrus fruit epicarps: Interactions between nutritional and hormonal signals. Physiologia Plantarum, 2001, 112, 244-250.	5.2	105
13	Fruit set dependence on carbohydrate availability in citrus trees. Tree Physiology, 2003, 23, 199-204.	3.1	104
14	Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 2005, 57, 375-391.	3.9	104
15	Molecular Physiology of Development and Quality of Citrus. Advances in Botanical Research, 2008, , 147-223.	1.1	96
16	Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus. Plant Physiology, 1997, 114, 557-564.	4.8	92
17	Ethylene-induced differential gene expression during abscission of citrus leaves. Journal of Experimental Botany, 2008, 59, 2717-2733.	4.8	92
18	Differential expression of putative 9-cis-epoxycarotenoid dioxygenases and abscisic acid accumulation in water stressed vegetative and reproductive tissues of citrus. Plant Science, 2007, 172, 85-94.	3.6	81

FRANCISCO R TADEO

#	Article	IF	CITATIONS
19	Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. Journal of Experimental Botany, 2007, 58, 1407-1420.	4.8	78
20	Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biology, 2009, 9, 127.	3.6	76
21	Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus. Trees - Structure and Function, 2006, 20, 348-355.	1.9	68
22	Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics, 2007, 8, 31.	2.8	64
23	Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus. Frontiers in Plant Science, 2017, 8, 126.	3.6	63
24	Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection. Journal of Experimental Botany, 2010, 61, 3321-3330.	4.8	62
25	The IDA Peptide Controls Abscission in Arabidopsis and Citrus. Frontiers in Plant Science, 2015, 6, 1003.	3.6	57
26	Histological and Physiological Characterization of Rind Breakdown of 'Navelate' Sweet Orange. Annals of Botany, 2001, 88, 415-422.	2.9	55
27	Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC Plant Biology, 2012, 12, 20.	3.6	46
28	Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. Tree Physiology, 2004, 24, 1027-1034.	3.1	43
29	Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes. Journal of Plant Physiology, 2002, 159, 991-998.	3.5	40
30	Protein Changes in the Albedo of Citrus Fruits on Postharvesting Storage. Journal of Agricultural and Food Chemistry, 2007, 55, 9047-9053.	5.2	37
31	Rind Structure, Epicuticular Wax Morphology and Water Permeability of 'Fortune' Mandarin Fruits affected by Peel Pitting. Annals of Botany, 1994, 74, 619-625.	2.9	34
32	Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: involvement of CitbHLH1. Journal of Experimental Botany, 2012, 63, 6079-6091.	4.8	34
33	Impact of culture vessel ventilation on the anatomy and morphology of micropropagated carnation. Plant Cell, Tissue and Organ Culture, 2000, 63, 207-214.	2.3	31
34	Genome-wide analysis of AGO, DCL and RDR gene families reveals RNA-directed DNA methylation is involved in fruit abscission in Citrus sinensis. BMC Plant Biology, 2019, 19, 401.	3.6	29
35	Prediction of components of the sporopollenin synthesis pathway in peach by genomic and expression analyses. BMC Genomics, 2013, 14, 40.	2.8	28
36	Transcriptomic analysis of Citrus clementina mandarin fruits maturation reveals a MADS-box transcription factor that might be involved in the regulation of earliness. BMC Plant Biology, 2019, 19, 47.	3.6	27

FRANCISCO R TADEO

#	Article	IF	CITATIONS
37	Effects of gibberellic acid and paclobutrazol on growth and carbohydrate accumulation in shoots and roots of citrus rootstock seedlings. The Journal of Horticultural Science, 1996, 71, 747-754.	0.3	26
38	Gibberellin-ethylene interaction controls radial expansion in citrus roots. Planta, 1997, 202, 370-378.	3.2	23
39	An <scp>RNA</scp> â€Seqâ€based reference transcriptome for Citrus. Plant Biotechnology Journal, 2016, 14, 938-950.	8.3	21
40	Effects of natural ventilation on leaf ultrastructure of Dianthus caryophyllus L. cultured in vitro. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 272-278.	2.1	19
41	Cytokinins in peach: Endogenous levels during early fruit development. Plant Physiology and Biochemistry, 1999, 37, 741-750.	5.8	18
42	The LOV Protein of Xanthomonas citri subsp. citri Plays a Significant Role in the Counteraction of Plant Immune Responses during Citrus Canker. PLoS ONE, 2013, 8, e80930.	2.5	18
43	Peroxidase activity changes and lignin deposition during the senescence process in citrus stigmas and styles. Plant Science, 1990, 68, 47-56.	3.6	17
44	1-Aminocyclopropane-1-carboxylic acid-induced ethylene stimulates callus formation by cell enlargement in the cambial region of internodal explants of Citrus. Plant Science, 1995, 110, 113-119.	3.6	16
45	Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria. Journal of Plant Physiology, 2013, 170, 934-942.	3.5	16
46	Effectiveness of calcium nitrate and GA ₃ on the control of peel-pitting of â€~Fortune' mandarin. The Journal of Horticultural Science, 1996, 71, 321-326.	0.3	15
47	Fruit growth and development. , 2020, , 245-269.		13
48	IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers. BMC Plant Biology, 2021, 21, 226.	3.6	13
49	Embryo sac development and endogenous gibberellins in pollinated and unpollinated ovaries of walnut (Juglans regia). Physiologia Plantarum, 1994, 91, 37-44.	5.2	11
50	Abscission of Orange Fruit (Citrus sinensis (L.) Osb.) in the Mediterranean Basin Depends More on Environmental Conditions Than on Fruit Ripeness. Agronomy, 2020, 10, 591.	3.0	10
51	Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. BMC Plant Biology, 2020, 20, 34.	3.6	10
52	Secondary abscission zones: understanding the molecular mechanisms triggering stylar abscission in citrus. Acta Horticulturae, 2016, , 65-72.	0.2	8
53	Phytohormone participation during Citrus sinensis non-host response to Xanthomonas campestris pv. vesicatoria. Plant Gene, 2018, 15, 28-36.	2.3	7
54	THREE NEW CULTIVARS OF CLEMENTINE: 'CLEMENVERD', 'NERO' AND 'NEUFINA'. Acta Horticulturae, 2015, , 239-243.	0.2	5

FRANCISCO R TADEO

#	Article	IF	CITATIONS
55	Novel insights into the Citrus sinensis nonhost response suggest photosynthesis decline, abiotic stress networks and secondary metabolism modifications. Functional Plant Biology, 2015, 42, 758.	2.1	4
56	"TO FALL OR NOT TO FALL, THAT'S THE QUESTION!" MOLECULAR MECHANISMS UNDERLYING ORGAN ABSCISSION IN CITRUS. Acta Horticulturae, 2015, , 1189-1195.	0.2	3
57	SEQUENCING OF 150 CITRUS VARIETIES: LINKING GENOTYPES TO PHENOTYPES. Acta Horticulturae, 2015, , 585-589.	0.2	1
58	Transcriptomics of Fruit Ripening in Citrus. , 2021, , 602-613.		1
59	Embryo sac development and endogenous gibberellins in pollinated and unpollinated ovaries of walnut (Juglans regia). Physiologia Plantarum, 1994, 91, 37-44.	5.2	0
60	Calcium signaling in water stress-induced leaf abscission in citrus plants. , 2007, , 303-304.		0