
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5190740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-content high-throughput imaging reveals distinct connections between mitochondrial morphology and functionality for OXPHOS complex I, III, and V inhibitors. Cell Biology and Toxicology, 2023, 39, 415-433.	5.3	8
2	Towards an advanced testing strategy for genotoxicity using image-based 2D and 3D HepG2 DNA damage response fluorescent protein reporters. Mutagenesis, 2022, 37, 130-142.	2.6	1
3	Mapping the cellular response to electron transport chain inhibitors reveals selective signaling networks triggered by mitochondrial perturbation. Archives of Toxicology, 2022, 96, 259-285.	4.2	7
4	Evaluation of an imaging-based in vitro screening platform for estrogenic activity with OECD reference chemicals. Toxicology in Vitro, 2022, 81, 105348.	2.4	1
5	Density-Dependent Migration Characteristics of Cancer Cells Driven by Pseudopod Interaction. Frontiers in Cell and Developmental Biology, 2022, 10, 854721.	3.7	6
6	Mapping the dynamics of Nrf2 antioxidant and NFκB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses. Toxicology in Vitro, 2022, 84, 105419.	2.4	2
7	Model-based translation of DNA damage signaling dynamics across cell types. PLoS Computational Biology, 2022, 18, e1010264.	3.2	3
8	In Vitro Threeâ€Ðimensional Liver Models for Nanomaterial DNA Damage Assessment. Small, 2021, 17, e2006055.	10.0	17
9	Differential reprogramming of breast cancer subtypes in 3D cultures and implications for sensitivity to targeted therapy. Scientific Reports, 2021, 11, 7259.	3.3	20
10	Physiologically Relevant Estrogen Receptor Alpha Pathway Reporters for Single-Cell Imaging-Based Carcinogenic Hazard Assessment of Estrogenic Compounds. Toxicological Sciences, 2021, 181, 187-198.	3.1	2
11	Splicing factors control triple-negative breast cancer cell mitosis through SUN2 interaction and sororin intron retention. Journal of Experimental and Clinical Cancer Research, 2021, 40, 82.	8.6	20
12	Squaramideâ€Based Supramolecular Materials Drive HepG2 Spheroid Differentiation. Advanced Healthcare Materials, 2021, 10, e2001903.	7.6	19
13	The in vitro assessment of the toxicity of volatile, oxidisable, redox-cycling compounds: phenols as an example. Archives of Toxicology, 2021, 95, 2109-2121.	4.2	4
14	Systematic transcriptome-based comparison of cellular adaptive stress response activation networks in hepatic stem cell-derived progeny and primary human hepatocytes. Toxicology in Vitro, 2021, 73, 105107.	2.4	9
15	Integration of temporal single cell cellular stress response activity with logic-ODE modeling reveals activation of ATF4-CHOP axis as a critical predictor of drug-induced liver injury. Biochemical Pharmacology, 2021, 190, 114591.	4.4	14
16	Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages. Archives of Toxicology, 2021, 95, 3285-3302.	4.2	13
17	The human hepatocyte TXG-MAPr: gene co-expression network modules to support mechanism-based risk assessment. Archives of Toxicology, 2021, 95, 3745-3775.	4.2	16
18	Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nature Reviews Drug Discovery, 2020, 19, 131-148.	46.4	153

#	Article	IF	CITATIONS
19	Utility of Extrapolating Human S1500+ Genes to the Whole Transcriptome: Tunicamycin Case Study. Bioinformatics and Biology Insights, 2020, 14, 117793222095274.	2.0	5
20	Quantitative phosphoproteomics to unravel the cellular response to chemical stressors with different modes of action. Archives of Toxicology, 2020, 94, 1655-1671.	4.2	16
21	Integrative analysis of genomic amplification-dependent expression and loss-of-function screen identifies ASAP1 as a driver gene in triple-negative breast cancer progression. Oncogene, 2020, 39, 4118-4131.	5.9	19
22	Multiparametric assessment of mitochondrial respiratory inhibition in HepG2 and RPTEC/TERT1 cells using a panel of mitochondrial targeting agrochemicals. Archives of Toxicology, 2020, 94, 2707-2729.	4.2	32
23	Multi-targeted kinase inhibition alleviates mTOR inhibitor resistance in triple-negative breast cancer. Breast Cancer Research and Treatment, 2019, 178, 263-274.	2.5	26
24	Advancing human health risk assessment. EFSA Journal, 2019, 17, e170712.	1.8	30
25	Uncovering the signaling landscape controlling breast cancer cell migration identifies novel metastasis driver genes. Nature Communications, 2019, 10, 2983.	12.8	58
26	Migration rather than proliferation transcriptomic signatures are strongly associated with breast cancer patient survival. Scientific Reports, 2019, 9, 10989.	3.3	28
27	A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy. Breast Cancer Research, 2019, 21, 77.	5.0	48
28	FRET biosensor-based kinase inhibitor screen for ERK and AKT activity reveals differential kinase dependencies for proliferation in TNBC cells. Biochemical Pharmacology, 2019, 169, 113640.	4.4	8
29	High-throughput confocal imaging of differentiated 3D liver-like spheroid cellular stress response reporters for identification of drug-induced liver injury liability. Archives of Toxicology, 2019, 93, 2895-2911.	4.2	40
30	An increased cell cycle gene network determines MEK and Akt inhibitor double resistance in triple-negative breast cancer. Scientific Reports, 2019, 9, 13308.	3.3	15
31	Development of a neurotoxicity assay that is tuned to detect mitochondrial toxicants. Archives of Toxicology, 2019, 93, 1585-1608.	4.2	34
32	System Microscopy of Stress Response Pathways in Cholestasis Research. Methods in Molecular Biology, 2019, 1981, 187-202.	0.9	6
33	Co-regulated gene expression of splicing factors as drivers of cancer progression. Scientific Reports, 2019, 9, 5484.	3.3	22
34	Towards grouping concepts based on new approach methodologies in chemical hazard assessment: the read-across approach of the EU-ToxRisk project. Archives of Toxicology, 2019, 93, 3643-3667.	4.2	82
35	Development of a Retinal-Based Probe for the Profiling of Retinaldehyde Dehydrogenases in Cancer Cells. ACS Central Science, 2019, 5, 1965-1974.	11.3	13
36	A systematic analysis of Nrf2 pathway activation dynamics during repeated xenobiotic exposure. Archives of Toxicology, 2019, 93, 435-451.	4.2	25

#	Article	IF	CITATIONS
37	Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Archives of Toxicology, 2018, 92, 1797-1814.	4.2	63
38	IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer. Oncogene, 2018, 37, 1869-1884.	5.9	34
39	Systems Microscopy Approaches in Unraveling and Predicting Drug-Induced Liver Injury (DILI). Methods in Pharmacology and Toxicology, 2018, , 611-625.	0.2	1
40	Current EU research activities on combined exposure to multiple chemicals. Environment International, 2018, 120, 544-562.	10.0	169
41	Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Archives of Toxicology, 2018, 92, 2517-2531.	4.2	46
42	High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities. Archives of Toxicology, 2017, 91, 1367-1383.	4.2	54
43	Comprehensive Landscape of Nrf2 and p53 Pathway Activation Dynamics by Oxidative Stress and DNA Damage. Chemical Research in Toxicology, 2017, 30, 923-933.	3.3	23
44	High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease. SLAS Discovery, 2017, 22, 974-984.	2.7	40
45	Insulin-like growth factor 1 receptor activation promotes mammary gland tumor development by increasing glycolysis and promoting biomass production. Breast Cancer Research, 2017, 19, 14.	5.0	24
46	Stem cell–derived models to improve mechanistic understanding and prediction of human drugâ€induced liver injury. Hepatology, 2017, 65, 710-721.	7.3	54
47	Activation of the Nrf2 response by intrinsic hepatotoxic drugs correlates with suppression of NF-κB activation and sensitizes toward TNFα-induced cytotoxicity. Archives of Toxicology, 2016, 90, 1163-1179.	4.2	54
48	Alternative signaling network activation through different insulin receptor family members caused by pro-mitogenic antidiabetic insulin analogues in human mammary epithelial cells. Breast Cancer Research, 2015, 17, 97.	5.0	8
49	Stem Cell-Derived Systems in Toxicology Assessment. Stem Cells and Development, 2015, 24, 1284-1296.	2.1	49
50	Annexin A1 expression in a pooled breast cancer series: association with tumor subtypes and prognosis. BMC Medicine, 2015, 13, 156.	5.5	51
51	Toxicogenomics directory of chemically exposed human hepatocytes. Archives of Toxicology, 2014, 88, 2261-2287.	4.2	143
52	Quantitative High Content Imaging of Cellular Adaptive Stress Response Pathways in Toxicity for Chemical Safety Assessment. Chemical Research in Toxicology, 2014, 27, 338-355.	3.3	76
53	A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Archives of Toxicology, 2014, 88, 1083-95.	4.2	261
54	Drug-Induced Endoplasmic Reticulum and Oxidative Stress Responses Independently Sensitize Toward TNFl±-Mediated Hepatotoxicity. Toxicological Sciences, 2014, 140, 144-159.	3.1	74

#	Article	IF	CITATION
55	A screen for apoptotic synergism between clinical relevant nephrotoxicant and the cytokine TNF-α. Toxicology in Vitro, 2013, 27, 2264-2272.	2.4	5
56	The ToxTracker Assay: Novel GFP Reporter Systems that Provide Mechanistic Insight into the Genotoxic Properties of Chemicals. Toxicological Sciences, 2012, 125, 285-298.	3.1	91
57	Automated Analysis of NF-κB Nuclear Translocation Kinetics in High-Throughput Screening. PLoS ONE, 2012, 7, e52337.	2.5	29
58	Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Research, 2011, 13, R52.	5.0	136
59	Diclofenac inhibits tumor necrosis factorâ€Î±â€induced nuclear factorâ€ÎºB activation causing synergistic hepatocyte apoptosis. Hepatology, 2011, 53, 2027-2041.	7.3	84
60	A portrait of cisplatin-induced transcriptional changes in mouse embryonic stem cells reveals a dominant p53-like response. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 617, 58-70.	1.0	16
61	An improved method to study NK-independent mechanisms of MTLn3 breast cancer lung metastasis. Clinical and Experimental Metastasis, 2007, 24, 379-387.	3.3	5
62	Suppression of Chemically Induced Apoptosis but Not Necrosis of Renal Proximal Tubular Epithelial (LLC-PK1) Cells by Focal Adhesion Kinase (FAK). Journal of Biological Chemistry, 2001, 276, 36183-36193.	3.4	55
63	Cleavage of the Actin-capping Protein α-Adducin at Asp-Asp-Ser-Asp633-Ala by Caspase-3 Is Preceded by Its Phosphorylation on Serine 726 in Cisplatin-induced Apoptosis of Renal Epithelial Cells. Journal of Biological Chemistry, 2000, 275, 25805-25813.	3.4	58