Nihar R Jena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5190383/publications.pdf Version: 2024-02-01

NIHAD R IENA

#	Article	IF	CITATIONS
1	DNA damage by reactive species: Mechanisms, mutation and repair. Journal of Biosciences, 2012, 37, 503-517.	0.5	261
2	Mechanisms of Formation of 8-Oxoguanine Due To Reactions of One and Two OH•Radicals and the H2O2Molecule with Guanine:Â A Quantum Computational Study. Journal of Physical Chemistry B, 2005, 109, 14205-14218.	1.2	87
3	Formation of ring-opened and rearranged products of guanine: Mechanisms and biological significance. Free Radical Biology and Medicine, 2012, 53, 81-94.	1.3	52
4	Formation of 8-nitroguanine and 8-oxoguanine due to reactions of peroxynitrite with guanine. Journal of Computational Chemistry, 2007, 28, 1321-1335.	1.5	42
5	Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19. Physical Chemistry Chemical Physics, 2020, 22, 28115-28122.	1.3	39
6	An ab initio and density functional study of microsolvation of carbon dioxide in water clusters and formation of carbonic acid. Theoretical Chemistry Accounts, 2005, 114, 189-199.	0.5	31
7	Protection Against Radiation-Induced DNA Damage by Amino Acids: A DFT Study. Journal of Physical Chemistry B, 2009, 113, 5633-5644.	1.2	31
8	A theoretical study of some new analogues of the anti-cancer drug camptothecin. Journal of Molecular Modeling, 2006, 13, 267-274.	0.8	21
9	Reaction of hypochlorous acid with imidazole: Formation of 2-chloro- and 2-oxoimidazoles. Journal of Computational Chemistry, 2008, 29, 98-107.	1.5	18
10	Drug targets, mechanisms of drug action, and therapeutics against SARS-CoV-2. Chemical Physics Impact, 2021, 2, 100011.	1.7	18
11	Mutagenicity associated with O6-methylguanine-DNA damage and mechanism of nucleotide flipping by AGT during repair. Physical Biology, 2011, 8, 046007.	0.8	17
12	O6-Methylguanine Repair by O6-Alkylguanine-DNA Alkyltransferase. Journal of Physical Chemistry B, 2009, 113, 16285-16290.	1.2	14
13	The R- and S-diastereoisomeric effects on the guanidinohydantoin-induced mutations in DNA. Physical Chemistry Chemical Physics, 2015, 17, 18111-18120.	1.3	14
14	Conformational stabilities of iminoallantoin and its base pairs in DNA: implications for mutagenicity. Physical Chemistry Chemical Physics, 2016, 18, 12774-12783.	1.3	14
15	Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2022, 40, 6381-6397.	2.0	14
16	Addition and hydrogen abstraction reactions of an OH radical with 8-oxoguanine. Chemical Physics Letters, 2006, 422, 417-423.	1.2	13
17	Is FapyG Mutagenic?: Evidence from the DFT Study. ChemPhysChem, 2013, 14, 3263-3270.	1.0	12
18	Does Tautomerization of FapyG Influence Its Mutagenicity?. ChemPhysChem, 2014, 15, 1779-1784.	1.0	12

Nihar R Jena

#	Article	IF	CITATIONS
19	Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics. Journal of Physical Chemistry B, 2019, 123, 6728-6739.	1.2	11
20	Interaction of Guanine, Its Anions, and Radicals with Lysine in Different Charge States. Journal of Physical Chemistry B, 2007, 111, 5418-5424.	1.2	10
21	Mechanisms of scavenging superoxide, hydroxyl, nitrogen dioxide and methoxy radicals by allicin: catalytic role of superoxide dismutase in scavenging superoxide radical. Journal of Chemical Sciences, 2018, 130, 1.	0.7	10
22	Analogues of P and Z as Efficient Artificially Expanded Genetic Information System. Journal of Physical Chemistry B, 2018, 122, 8134-8145.	1.2	9
23	Inhibition of the RNA-dependent RNA Polymerase of the SARS-CoV-2 by Short Peptide Inhibitors. European Journal of Pharmaceutical Sciences, 2021, 167, 106012.	1.9	8
24	Electron and hole interactions with P, Z, and P:Z and the formation of mutagenic products by proton transfer reactions. Physical Chemistry Chemical Physics, 2020, 22, 919-931.	1.3	7
25	Normal and reverse base pairing of Iz and Oz lesions in DNA: structural implications for mutagenesis. RSC Advances, 2016, 6, 64019-64027.	1.7	5
26	Binding of BIS like and other ligands with the GSK-3Î ² kinase: a combined docking and MM-PBSA study. Journal of Molecular Modeling, 2012, 18, 631-644.	0.8	4
27	Hybrid nucleobases as new and efficient unnatural genetic letters. Journal of Biomolecular Structure and Dynamics, 2023, 41, 366-376.	2.0	4
28	Structures and dynamics of peptide and peptidomimetic inhibitors bound to the NS2B-NS3 protease of the ZIKA virus. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3076-3088.	2.0	4
29	Rare Tautomers of Artificially Expanded Genetic Letters and their Effects on the Base Pair Stabilities. ChemPhysChem, 2022, , .	1.0	3
30	Study of relationship of atomic orbital hybridization with bonding using hybridization displacement charge: optimal hybridization principle. Computational and Theoretical Chemistry, 2005, 719, 75-84.	1.5	2
31	Cysteineâ€metal Porous Frameworks as Biosensing Elements for the Adsorption of Reactive Oxygen Species. ChemistrySelect, 2018, 3, 7732-7740.	0.7	1
32	A 3Dâ€QSAR Study of Celebrexâ€Based Pdk1 Inhibitors Using Comfa Method. Journal of the Chinese Chemical Society, 2009, 56, 59-64.	0.8	0
33	Manganese oordinated Tyrosine Bio Materials for the Sensing of Reactive Oxygen Species. ChemistrySelect, 2019, 4, 6945-6953.	0.7	0
34	Formation of DNA Lesions, its Prevention and Repair. Challenges and Advances in Computational Chemistry and Physics, 2014, , 59-94.	0.6	0