
Jean Jacques Letesson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5190135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proceedings of the United States of America, 2002, 99, 443-448.	3.3	513
2	From the discovery of the Malta fever?s agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Veterinary Research, 2005, 36, 313-326.	1.1	475
3	Identification of Brucella spp. genes involved in intracellular trafficking. Cellular Microbiology, 2001, 3, 487-497.	1.1	209
4	Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export. PLoS ONE, 2008, 3, e2760.	1.1	159
5	Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Molecular Microbiology, 2000, 38, 543-551.	1.2	158
6	MyD88-Dependent Activation of B220â^'CD11b+LY-6C+ Dendritic Cells during <i>Brucella melitensis</i> Infection. Journal of Immunology, 2007, 178, 5182-5191.	0.4	155
7	A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cellular Microbiology, 2005, 7, 1151-1161.	1.1	153
8	Protection of BALB/c Mice against Brucella abortus 544 Challenge by Vaccination with Bacterioferritin or P39 Recombinant Proteins with CpG Oligodeoxynucleotides as Adjuvant. Infection and Immunity, 2001, 69, 4816-4822.	1.0	122
9	Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cellular Microbiology, 2011, 13, 1044-1058.	1.1	119
10	Identification of the Perosamine Synthetase Gene of <i>Brucella melitensis</i> 16M and Involvement of Lipopolysaccharide O Side Chain in <i>Brucella</i> Survival in Mice and in Macrophages. Infection and Immunity, 1998, 66, 5485-5493.	1.0	117
11	Morphological and functional asymmetry in α-proteobacteria. Trends in Microbiology, 2004, 12, 361-365.	3.5	116
12	How to substantiate eradication of bovine brucellosis when aspecific serological reactions occur in the course of brucellosis testing. Veterinary Microbiology, 2002, 90, 461-477.	0.8	115
13	Correlations between Carbon Metabolism and Virulence in Bacteria. Contributions To Microbiology, 2009, 16, 88-102.	2.1	115
14	BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Frontiers in Cellular and Infection Microbiology, 2013, 3, 28.	1.8	110
15	Crucial Role of Gamma Interferon-Producing CD4 ⁺ Th1 Cells but Dispensable Function of CD8 ⁺ T Cell, B Cell, Th2, and Th17 Responses in the Control of Brucella melitensis Infection in Mice. Infection and Immunity, 2012, 80, 4271-4280.	1.0	109
16	Genetic organisation of the lipopolysaccharide O-antigen biosynthesis region of Brucella melitensis 16M (wbk). Research in Microbiology, 2000, 151, 655-668.	1.0	104
17	In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice. PLoS Pathogens, 2012, 8, e1002575.	2.1	101
18	G1-arrested newborn cells are the predominant infectious form of the pathogen Brucella abortus. Nature Communications, 2014, 5, 4366.	5.8	100

#	Article	IF	CITATIONS
19	The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cellular Microbiology, 2006, 8, 1791-1802.	1.1	98
20	Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells. , 1998, 75, 105-111.		94
21	Systematic Targeted Mutagenesis of Brucella melitensis 16M Reveals a Major Role for GntR Regulators in the Control ofVirulence. Infection and Immunity, 2005, 73, 5578-5586.	1.0	92
22	Humoral immune responses of Brucella-infected cattle, sheep, and goats to eight purified recombinant Brucella proteins in an indirect enzyme-linked immunosorbent assay. Vaccine Journal, 1997, 4, 556-564.	2.6	87
23	Phenotypic and molecular characterization of a Brucella strain isolated from a minke whale (Balaenoptera acutorostrata). Microbiology (United Kingdom), 1998, 144, 3267-3273.	0.7	84
24	Brucellapathogenesis, genes identified from random large-scale screens. FEMS Microbiology Letters, 2004, 231, 1-12.	0.7	81
25	Humoral Immunity and CD4+ Th1 Cells Are Both Necessary for a Fully Protective Immune Response upon Secondary Infection with <i>Brucella melitensis</i> . Journal of Immunology, 2014, 192, 3740-3752.	0.4	81
26	Identification of a Quorum-Sensing Signal Molecule in the Facultative Intracellular Pathogen Brucella melitensis. Infection and Immunity, 2002, 70, 3004-3011.	1.0	80
27	Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. Molecular Microbiology, 2002, 43, 945-960.	1.2	80
28	Generation of the Brucella melitensis ORFeome Version 1.1. Genome Research, 2004, 14, 2201-2206.	2.4	77
29	Mutations of the Quorum Sensing-Dependent Regulator VjbR Lead to Drastic Surface Modifications in Brucella melitensis. Journal of Bacteriology, 2007, 189, 6035-6047.	1.0	76
30	Infection of cattle with Yersinia enterocolitica O:9 a cause of the false positive serological reactions in bovine brucellosis diagnostic tests. Veterinary Microbiology, 1996, 48, 101-112.	0.8	75
31	Mitochondria: A target for bacteria. Biochemical Pharmacology, 2015, 94, 173-185.	2.0	74
32	The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. EMBO Journal, 2007, 26, 1444-1455.	3.5	70
33	Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen <i>Brucella melitensis</i> 16 M. Journal of Proteome Research, 2010, 9, 3200-3217.	1.8	70
34	Molecular cloning, nucleotide sequence, and occurrence of a 16.5-kilodalton outer membrane protein of Brucella abortus with similarity to pal lipoproteins. Infection and Immunity, 1994, 62, 3633-3639.	1.0	69
35	An RpoH-Like Heat Shock Sigma Factor Is Involved in Stress Response and Virulence in Brucella melitensis 16M. Journal of Bacteriology, 2006, 188, 7707-7710.	1.0	67
36	Induction of Immune Response in BALB/c Mice with a DNA Vaccine Encoding Bacterioferritin or P39 of Brucella spp. Infection and Immunity, 2001, 69, 6264-6270.	1.0	59

#	Article	IF	CITATIONS
37	Yersinia enterocolitica as a Vehicle for a Naked DNA Vaccine Encoding Brucella abortus Bacterioferritin or P39 Antigen. Infection and Immunity, 2002, 70, 1915-1923.	1.0	57
38	Gateway-Based Destination Vectors for Functional Analyses of Bacterial ORFeomes: Application to the Min System in Brucella abortus. Applied and Environmental Microbiology, 2007, 73, 1375-1379.	1.4	57
39	Brucella melitensis MucR, an Orthologue of Sinorhizobium meliloti MucR, Is Involved in Resistance to Oxidative, Detergent, and Saline Stresses and Cell Envelope Modifications. Journal of Bacteriology, 2013, 195, 453-465.	1.0	57
40	Effect of omp10 or omp19 Deletion on Brucella abortus Outer Membrane Properties and Virulence in Mice. Infection and Immunity, 2002, 70, 5540-5546.	1.0	56
41	NnrA Is Required for Full Virulence and Regulates Several Brucella melitensis Denitrification Genes. Journal of Bacteriology, 2006, 188, 1615-1619.	1.0	56
42	Characterization of smooth lipopolysaccharides and O polysaccharides of Brucella species by competition binding assays with monoclonal antibodies. Infection and Immunity, 1997, 65, 1939-1943.	1.0	55
43	<i>Brucella</i> adaptation and survival at the crossroad of metabolism and virulence. FEBS Letters, 2011, 585, 2929-2934.	1.3	54
44	Identification of Immune Effectors Essential to the Control of Primary and Secondary Intranasal Infection with <i>Brucella melitensis</i> in Mice. Journal of Immunology, 2016, 196, 3780-3793.	0.4	54
45	Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in <i>Brucella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17815-17820.	3.3	53
46	DNA polymorphism analysis of Brucella lipopolysaccharide genes reveals marked differences in O-polysaccharide biosynthetic genes between smooth and rough Brucella species and novel species-specific markers. BMC Microbiology, 2009, 9, 92.	1.3	50
47	Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth <i>In Vitro</i> and Inside Macrophages. Infection and Immunity, 2018, 86, .	1.0	47
48	Brucella abortus Depends on Pyruvate Phosphate Dikinase and Malic Enzyme but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases for Full Virulence in Laboratory Models. Journal of Bacteriology, 2014, 196, 3045-3057.	1.0	43
49	Brucella melitensis Invades Murine Erythrocytes during Infection. Infection and Immunity, 2014, 82, 3927-3938.	1.0	42
50	Serological cross-reactivity between Brucella abortus and Yersinia enterocolitica 0:9:. Veterinary Microbiology, 1998, 60, 45-57.	0.8	41
51	Brucella abortus Cell Cycle and Infection Are Coordinated. Trends in Microbiology, 2015, 23, 812-821.	3.5	41
52	3D correlative electron microscopy reveals continuity of <i>Brucella</i> -containing vacuoles with the endoplasmic reticulum. Journal of Cell Science, 2018, 131, .	1.2	40
53	CtrA controls cell division and outer membrane composition of the pathogen <i>Brucella abortus</i> . Molecular Microbiology, 2017, 103, 780-797.	1.2	39
54	Functional Characterization of the Incomplete Phosphotransferase System (PTS) of the Intracellular Pathogen Brucella melitensis. PLoS ONE, 2010, 5, e12679.	1.1	39

#	Article	IF	CITATIONS
55	Innate immune recognition of flagellin limits systemic persistence of <i>Brucella</i> . Cellular Microbiology, 2013, 15, 942-960.	1.1	38
56	Cloning and sequencing of the bacterioferritin gene ofBrucella melitensis16M strain. FEBS Letters, 1995, 361, 238-242.	1.3	37
57	Molecular, Antigenic, and Functional Analyses of Omp2b Porin Size Variants of Brucella spp. Journal of Bacteriology, 2001, 183, 4839-4847.	1.0	37
58	Antigenic properties of peptidic mimics for epitopes of the lipopolysaccharide from Brucella 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 294, 181-191.	2.0	36
59	<i>Brucella</i> , nitrogen and virulence. Critical Reviews in Microbiology, 2016, 42, 507-525.	2.7	36
60	Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB. Journal of Medical Microbiology, 1997, 46, 801-806.	0.7	35
61	The Ton System, an ABC Transporter, and a Universally Conserved GTPase Are Involved in Iron Utilization by Brucella melitensis 16M. Infection and Immunity, 2004, 72, 5783-5790.	1.0	35
62	PdhS, an Old-Pole-Localized Histidine Kinase, Recruits the Fumarase FumC in <i>Brucella abortus</i> . Journal of Bacteriology, 2010, 192, 3235-3239.	1.0	34
63	Quorum Sensing and Self-Quorum Quenching in the Intracellular Pathogen Brucellamelitensis. PLoS ONE, 2013, 8, e82514.	1.1	34
64	<i>Brucella</i> central carbon metabolism: an update. Critical Reviews in Microbiology, 2018, 44, 182-211.	2.7	34
65	Conservation of seven genes involved in the biosynthesis of the lipopolysaccharide O-side chain in Brucella spp Research in Microbiology, 2000, 151, 209-216.	1.0	29
66	<i>Brucella melitensis</i> 16M produces a mannan and other extracellular matrix components typical of a biofilm. FEMS Immunology and Medical Microbiology, 2010, 59, 364-377.	2.7	29
67	The Brucella pathogens are polarized bacteria. Microbes and Infection, 2013, 15, 998-1004.	1.0	29
68	Route of Infection Strongly Impacts the Host-Pathogen Relationship. Frontiers in Immunology, 2019, 10, 1589.	2.2	29
69	Morphological analysis of the sheathed flagellum of Brucella melitensis. BMC Research Notes, 2010, 3, 333.	0.6	28
70	Brucella Genital Tropism: What's on the Menu. Frontiers in Microbiology, 2017, 8, 506.	1.5	27
71	Identification of the Essential Brucella melitensis Porin Omp2b as a Suppressor of Bax-Induced Cell Death in Yeast in a Genome-Wide Screening. PLoS ONE, 2010, 5, e13274.	1.1	27
72	Role of FlbT in flagellin production in Brucella melitensis. Microbiology (United Kingdom), 2011, 157, 1253-1262.	0.7	25

#	Article	IF	CITATIONS
73	In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice. PLoS ONE, 2015, 10, e0137835.	1.1	25
74	Trypanosoma Infection Favors Brucella Elimination via IL-12/IFNÎ ³ -Dependent Pathways. Frontiers in Immunology, 2017, 8, 903.	2.2	25
75	Characterization, occurrence, and molecular cloning of a 39-kilodalton Brucella abortus cytoplasmic protein immunodominant in cattle. Infection and Immunity, 1997, 65, 495-502.	1.0	25
76	Immunogenicity and protective efficacy of DNA vaccines encoding MAP0586c and MAP4308c of Mycobacterium avium subsp. paratuberculosis secretome. Vaccine, 2008, 26, 4783-4794.	1.7	24
77	Selection of Phage-displayed Peptides Recognised by Monoclonal Antibodies Directed against the Lipopolysaccharide of <i>Brucella</i> . International Reviews of Immunology, 2001, 20, 181-199.	1.5	23
78	RpoE1, an extracytoplasmic function sigma factor, is a repressor of the flagellar system in Brucella melitensis. Microbiology (United Kingdom), 2011, 157, 1263-1268.	0.7	23
79	Characterization of a monoclonal antibody specific for Brucella smooth lipopolysaccharide and development of a competitive enzyme-linked immunosorbent assay to improve the serological diagnosis of brucellosis. Vaccine Journal, 1996, 3, 309-314.	2.6	23
80	The Histidine Kinase PdhS Controls Cell Cycle Progression of the Pathogenic Alphaproteobacterium Brucella abortus. Journal of Bacteriology, 2012, 194, 5305-5314.	1.0	22
81	Allergic Asthma Favors Brucella Growth in the Lungs of Infected Mice. Frontiers in Immunology, 2018, 9, 1856.	2.2	21
82	Use of Mycobacterium avium subsp. paratuberculosis specific coding sequences for serodiagnosis of bovine paratuberculosis. Veterinary Microbiology, 2009, 135, 313-319.	0.8	20
83	Erythritol Availability in Bovine, Murine and Human Models Highlights a Potential Role for the Host Aldose Reductase during Brucella Infection. Frontiers in Microbiology, 2017, 8, 1088.	1.5	20
84	Pathogenicity and Its Implications in Taxonomy: The Brucella and Ochrobactrum Case. Pathogens, 2022, 11, 377.	1.2	19
85	Immunogenicity of eight Mycobacterium avium subsp. paratuberculosis specific antigens in DNA vaccinated and Map infected mice. Veterinary Immunology and Immunopathology, 2012, 145, 74-85.	0.5	17
86	Mitochondrial fragmentation affects neither the sensitivity to TNFα-induced apoptosis of Brucella-infected cells nor the intracellular replication of the bacteria. Scientific Reports, 2018, 8, 5173.	1.6	17
87	Overproduced Brucella abortus PdhS-mCherry forms soluble aggregates in Escherichia coli, partially associating with mobile foci of IbpA-YFP. BMC Microbiology, 2010, 10, 248.	1.3	16
88	The alkylation response protein AidB is localized at the new poles and constriction sites in Brucella abortus. BMC Microbiology, 2011, 11, 257.	1.3	16
89	The two-component system PrIS/PrIR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology (United Kingdom), 2012, 158, 2642-2651.	0.7	15
90	Virulence and immunogenicity of genetically defined human and porcine isolates of M. avium subsp. hominissuis in an experimental mouse infection. PLoS ONE, 2017, 12, e0171895.	1.1	15

#	Article	IF	CITATIONS
91	Replication of Brucella abortus and Brucella melitensis in fibroblasts does not require Atg5-dependent macroautophagy. BMC Microbiology, 2014, 14, 223.	1.3	14
92	Small GTPases and <i>Brucella</i> entry into the endoplasmic reticulum. Biochemical Society Transactions, 2012, 40, 1348-1352.	1.6	13
93	Convergent evolution of zoonotic <i>Brucella</i> species toward the selective use of the pentose phosphate pathway. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26374-26381.	3.3	13
94	Comparison between â€~lgY technology' from chickens and â€~lgG technology' from mice for production tailor-made antibodies. Tetrahedron Letters, 2002, 43, 1843-1846.	of 0.7	12
95	First synthesis of 3- O -methyl-scyllo-inosamine, a natural product which favors the Rhizobium–Leguminosae symbiosis. Tetrahedron Letters, 2004, 45, 1461-1463.	0.7	11
96	Chronic Brucella Infection Induces Selective and Persistent Interferon Gamma-Dependent Alterations of Marginal Zone Macrophages in the Spleen. Infection and Immunity, 2017, 85, .	1.0	11
97	6.6 Production of a monoclonal antibody to the light chain of the bovine β2-integrin family (BoCD18). Veterinary Immunology and Immunopathology, 1993, 39, 103-108.	0.5	10
98	Structural analysis of Brucella abortus RicA substitutions that do not impair interaction with human Rab2 GTPase. BMC Biochemistry, 2012, 13, 16.	4.4	8
99	A Brucella abortus cstA mutant is defective for association with endoplasmic reticulum exit sites and displays altered trafficking in HeLa cells. Microbiology (United Kingdom), 2012, 158, 2610-2618.	0.7	8
100	Field performance of six Mycobacterium avium subsp. paratuberculosis antigens in a 20 h interferon gamma release assay in Belgium. Veterinary Immunology and Immunopathology, 2017, 189, 17-27.	0.5	8
101	Recognition of Î ² -Ketoalcohol-derived Haptens by Tailor-made Antibodies. Synlett, 2001, 2001, 0931-0936.	1.0	4
102	Monoclonal antibody specific for bovine CD 5 antigen which enhances mitogen-induced blastogenesis and IL-2 production. Veterinary Immunology and Immunopathology, 1990, 25, 249-257.	0.5	3
103	Glucose Oxidation to Pyruvate Is Not Essential for Brucella suis Biovar 5 Virulence in the Mouse Model. Frontiers in Microbiology, 2020, 11, 620049.	1.5	2
104	Design and implementation of a database for Brucella melitensis genome annotation. Veterinary Microbiology, 2008, 127, 369-378.	0.8	0