
Yung-Chih Kuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5190055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic Graphene Oxide-Xanthan Gum-Hydroxyapatite Composite Scaffold for Bone Tissue Engineering. Chemistry Africa, 2023, 6, 145-152.	2.4	1
2	Rabies virus glycoprotein- and transferrin-functionalized liposomes to elevate epigallocatechin gallate and FK506 activity and mediate MAPK against neuronal apoptosis in Parkinson's disease. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104142.	5.3	2
3	Functionalized drug-gene delivery materials to transport inhibitor of apoptosis protein antagonists for tumor malignancy management. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104283.	5.3	2
4	Enhanced activity of AZD5582 and SM-164 in rabies virus glycoprotein-lactoferrin-liposomes to downregulate inhibitors of apoptosis proteins in glioblastoma. Materials Science and Engineering C, 2022, 133, 112615.	7.3	10
5	Regeneration of insulin-producing cells from iPS cells using functionalized scaffolds and solid lipid nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2022, 135, 104387.	5.3	2
6	Suppressed XIAP and cIAP expressions in human brain cancer stem cells using BV6- and GDC0152-encapsulated nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2022, 135, 104394.	5.3	5
7	Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson's disease therapy. Acta Biomaterialia, 2021, 119, 360-374.	8.3	37
8	Enhanced integrin affinity and neural differentiation of induced pluripotent stem cells using Ln5-P4-grafted amphiphilic solid lipid nanoparticles. Materials Science and Engineering C, 2021, 118, 111339.	7.3	7
9	Glutathione Liposomes Carrying Ceftriaxone, FK506, and Nilotinib to Control Overexpressed Dopamine Markers and Apoptotic Factors in Neurons. ACS Biomaterials Science and Engineering, 2021, 7, 3242-3255.	5.2	6
10	Glutathione- and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer's disease. Materials Science and Engineering C, 2021, 127, 112233.	7.3	13
11	Dual-sized inverted colloidal crystal scaffolds grafted with GDF-8 and Wnt3a for enhancing differentiation of iPS cells toward islet β-cells. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 371-382.	5.3	4
12	Astragaloside IV- and nesfatin-1-encapsulated phosphatidylserine liposomes conjugated with wheat germ agglutinin and leptin to activate anti-apoptotic pathway and block phosphorylated tau protein expression for Parkinson's disease treatment. Materials Science and Engineering C, 2021, 129, 112361.	7.3	12
13	Particulate systems for improving therapeutic efficacy of pharmaceuticals against central nervous system-related diseases. Journal of the Taiwan Institute of Chemical Engineers, 2020, 114, 12-23.	5.3	12
14	iPSCs-laden GDF8-grafted aldehyde hyaluronic acid-polyacrylamide inverted colloidal crystal constructs with controlled release of CHIR99021 and retinoic acid to generate insulin-producing cells. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, 223-237.	5.3	1
15	Biomaterial-based drug delivery systems used to improve chemotherapeutic activity of pharmaceuticals and to target inhibitors of apoptosis proteins. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 1-10.	5.3	6
16	Inhibition of glioblastoma and macrophage phagocytosis using sialic acid-grafted tamoxifen-carmustine-polyethyleneimine-poly(lactic-co-glycolic acid) nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 302-311.	5.3	4
17	Dual functional liposomes carrying antioxidants against tau hyperphosphorylation and apoptosis of neurons. Journal of Drug Targeting, 2020, 28, 949-960.	4.4	9
18	Multiple-component dual-phase solid lipid nanoparticles with conjugated transferrin for formulating antioxidants and nerve growth factor against neuronal apoptosis. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110, 140-152.	5.3	9

#	Article	IF	CITATIONS
19	Electrophoretic mobility of neuron-like cells regenerated from iPSCs with induction of retinoic acid- and nerve growth factor-loaded solid lipid nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 167-176.	5.3	1
20	Luminescent anticancer ruthenium(<scp>ii</scp>)- <i>p</i> -cymene complexes of extended imidazophenanthroline ligands: synthesis, structure, reactivity, biomolecular interactions and live cell imaging. Dalton Transactions, 2019, 48, 12257-12271.	3.3	30
21	Challenges in the treatment of Alzheimer's disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Review of Neurotherapeutics, 2019, 19, 623-652.	2.8	17
22	Self-assembled ternary poly(vinyl alcohol)-alginate-gelatin hydrogel with controlled-release nanoparticles for pancreatic differentiation of iPS cells. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 27-39.	5.3	12
23	Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomaterialia, 2019, 87, 207-222.	8.3	38
24	Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Materials Science and Engineering C, 2019, 102, 362-372.	7.3	43
25	Protection against Neurodegeneration in the Hippocampus Using Sialic Acid- and 5-HT-Moduline-Conjugated Lipopolymer Nanoparticles. ACS Biomaterials Science and Engineering, 2019, 5, 1311-1320.	5.2	8
26	Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)‑poly(ε‑caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid. Materials Science and Engineering C, 2019, 96, 114-128.	7.3	36
27	Iron oxide-entrapped solid lipid nanoparticles and poly(lactide-co-glycolide) nanoparticles with surfactant stabilization for antistatic application. Journal of Materials Research and Technology, 2019, 8, 887-895.	5.8	5
28	Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 1-14.	5.3	37
29	Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 15-25.	5.3	17
30	Regulation of human brain vascular pericytes and human astrocytes in a blood–brain barrier model using human brain microvascular endothelial cells: Expression of TGF-β1, VEGF, MMP-9 and P-gp. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86, 9-17.	5.3	11
31	Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. Materials Science and Engineering C, 2018, 91, 445-457.	7.3	45
32	Neuroregeneration of Induced Pluripotent Stem Cells in Polyacrylamide-Chitosan Inverted Colloidal Crystal Scaffolds with Poly(lactide- <i>co</i> -glycolide) Nanoparticles and Transactivator of Transcription von Hippel-Lindau Peptide. Tissue Engineering - Part A, 2017, 23, 263-274.	3.1	9
33	Pancreatic differentiation of induced pluripotent stem cells in activin A-grafted gelatin-poly(lactide-co-glycolide) nanoparticle scaffolds with induction of LY294002 and retinoic acid. Materials Science and Engineering C, 2017, 77, 384-393.	7.3	22
34	Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly- l -lysine for cartilage tissue engineering. Materials Science and Engineering C, 2017, 78, 265-277.	7.3	36
35	Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 41-53.	5.3	11
36	A critical overview of therapeutic strategy and advancement for Alzheimer's disease treatment. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 92-105.	5.3	11

#	Article	IF	CITATIONS
37	Anti-melanotransferrin and apolipoprotein E on doxorubicin-loaded cationic solid lipid nanoparticles for pharmacotherapy of glioblastoma multiforme. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 10-20.	5.3	9
38	Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 73-82.	5.3	8
39	Recent advances in the treatment of glioblastoma multiforme by inhibiting angiogenesis and using nanocarrier systems. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 30-40.	5.3	3
40	Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. Materials Science and Engineering C, 2017, 77, 680-689.	7.3	29
41	Neuronal production from induced pluripotent stem cells in self-assembled collagen-hyaluronic acid-alginate microgel scaffolds with grafted GRGDSP/Ln5-P4. Materials Science and Engineering C, 2017, 76, 760-774.	7.3	18
42	Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer's disease treatment. International Journal of Nanomedicine, 2017, Volume 12, 1757-1774.	6.7	49
43	Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. International Journal of Nanomedicine, 2017, Volume 12, 2857-2869.	6.7	71
44	Targeted delivery of rosmarinic acid across the blood–brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide- co -glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E. International Journal of Pharmaceutics, 2017, 528, 228-241.	5.2	39
45	Rescuing cholinergic neurons from apoptotic degeneration by targeting of serotonin modulator- and apolipoprotein E-conjugated liposomes to the hippocampus. International Journal of Nanomedicine, 2016, Volume 11, 6809-6824.	6.7	17
46	Regeneration of neurite-like cells from induced pluripotent stem cells in self-assembled hyaluronic acid-gelatin microhydrogel. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 74-87.	5.3	10
47	Conjugation of melanotransferrin antibody on solid lipid nanoparticles for mediating brain cancer malignancy. Biotechnology Progress, 2016, 32, 480-490.	2.6	29
48	Delivery of doxorubicin to glioblastoma multiforme in vitro using solid lipid nanoparticles with surface aprotinin and melanotransferrin antibody for enhanced chemotherapy. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 32-45.	5.3	23
49	Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. Life Sciences, 2016, 146, 222-231.	4.3	35
50	Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. International Journal of Pharmaceutics, 2016, 499, 10-19.	5.2	69
51	Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles. Journal of Drug Targeting, 2016, 24, 645-654.	4.4	36
52	Rescuing apoptotic neurons in Alzheimer's disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. International Journal of Nanomedicine, 2015, 10, 2653.	6.7	47
53	Inhibition Against Growth of Glioblastoma Multiforme In Vitro Using Etoposide-Loaded Solid Lipid Nanoparticles with I•Aminophenyl-α-D-Manno-Pyranoside and Folic Acid. Journal of Pharmaceutical Sciences, 2015, 104, 1804-1814.	3.3	29
54	Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles. International Journal of Pharmaceutics, 2015, 479, 138-149.	5.2	83

#	Article	IF	CITATIONS
55	Targeting delivery of liposomes with conjugated p-aminophenyl- α - <scp>d</scp> -manno-pyranoside and apolipoprotein E for inhibiting neuronal degeneration insulted with β -amyloid peptide. Journal of Drug Targeting, 2015, 23, 147-158.	4.4	14
56	Carmustine-loaded catanionic solid lipid nanoparticles with serotonergic 1B receptor subtype antagonist for in vitro targeted delivery to inhibit brain cancer growth. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 1-14.	5.3	24
57	Neuroprotection Against Degeneration of SK-N-MC Cells Using Neuron Growth Factor-Encapsulated Liposomes with Surface Cereport and Transferrin. Journal of Pharmaceutical Sciences, 2014, 103, 2484-2497.	3.3	40
58	Protection of SK-N-MC cells against β-amyloid peptide-induced degeneration using neuron growth factor-loaded liposomes with surface lactoferrin. Biomaterials, 2014, 35, 5954-5964.	11.4	47
59	Transferrin-grafted catanionic solid lipid nanoparticles for targeting delivery of saquinavir to the brain. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 755-763.	5.3	24
60	Solid lipid nanoparticles with surface antibody for targeting the brain and inhibiting lymphatic phagocytosis. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1154-1163.	5.3	11
61	Cationic solid lipid nanoparticles with cholesterolâ€mediated surface layer for transporting saquinavir to the brain. Biotechnology Progress, 2014, 30, 198-206.	2.6	29
62	Colloidal drug delivery system for brain-targeting therapy. , 2014, , 389-410.		0
63	Angiopep-pluronic F127-conjugated superparamagnetic iron oxide nanoparticles as nanotheranostic agents for BBB targeting. Journal of Materials Chemistry B, 2014, 2, 5666.	5.8	20
64	Cardiolipin-incorporated liposomes with surface CRM197 for enhancing neuronal survival against neurotoxicity. International Journal of Pharmaceutics, 2014, 473, 334-344.	5.2	17
65	Capillary electrophoresis of induced pluripotent stem cells during differentiation toward neurons. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2096-2105.	5.3	4
66	Delivering etoposide to the brain using catanionic solid lipid nanoparticles with surface 5-HT-moduline. International Journal of Pharmaceutics, 2014, 465, 132-142.	5.2	30
67	Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials, 2013, 34, 4818-4830.	11.4	88
68	Polybutylcyanoacrylate nanoparticle-mediated neurotrophin-3 gene delivery for differentiating iPS cells into neurons. Biomaterials, 2013, 34, 5562-5570.	11.4	20
69	Solid lipid nanoparticles carrying chemotherapeutic drug across the blood–brain barrier through insulin receptor-mediated pathway. Journal of Drug Targeting, 2013, 21, 730-738.	4.4	47
70	Guided differentiation of induced pluripotent stem cells into neuronal lineage in alginate–chitosan–gelatin hydrogels with surface neuron growth factor. Colloids and Surfaces B: Biointerfaces, 2013, 104, 194-199.	5.0	32
71	Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials, 2013, 34, 9717-9727.	11.4	24
72	Accelerated nerve regeneration using induced pluripotent stem cells in chitin–chitosan–gelatin scaffolds with inverted colloidal crystal geometry. Colloids and Surfaces B: Biointerfaces, 2013, 103, 595-600.	5.0	42

#	Article	IF	CITATIONS
73	Cryopreserved chondrocytes in porous biomaterials with surface elastin and poly-l-lysine for cartilage regeneration. Colloids and Surfaces B: Biointerfaces, 2013, 103, 304-309.	5.0	5
74	Cationic solid lipid nanoparticles with primary and quaternary amines for release of saquinavir and biocompatibility with endothelia. Colloids and Surfaces B: Biointerfaces, 2013, 101, 101-105.	5.0	29
75	Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials. Colloids and Surfaces B: Biointerfaces, 2013, 102, 405-411.	5.0	40
76	Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering. Colloids and Surfaces B: Biointerfaces, 2013, 102, 789-794.	5.0	21
77	Surface Molecular Composition and Electrical Property of Cationic Solid Lipid Nanoparticles with Assembled Lipid Layer Mediated by Noncovalent Interactions. Journal of Physical Chemistry C, 2012, 116, 16999-17007.	3.1	6
78	Neuronal differentiation of induced pluripotent stem cells in hybrid polyester scaffolds with heparinized surface. Colloids and Surfaces B: Biointerfaces, 2012, 100, 9-15.	5.0	29
79	TATVHL peptide-grafted alginate/poly(γ-glutamic acid) scaffolds with inverted colloidal crystal topology for neuronal differentiation of iPS cells. Biomaterials, 2012, 33, 8955-8966.	11.4	48
80	Methylmethacrylate–sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood–brain barrier. Colloids and Surfaces B: Biointerfaces, 2012, 90, 75-82.	5.0	49
81	Expression of P-glycoprotein and multidrug resistance-associated protein on human brain-microvascular endothelial cells with electromagnetic stimulation. Colloids and Surfaces B: Biointerfaces, 2012, 91, 57-62.	5.0	16
82	Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids and Surfaces B: Biointerfaces, 2012, 91, 242-249.	5.0	52
83	Application of albumin-grafted scaffolds to promote neocartilage formation. Colloids and Surfaces B: Biointerfaces, 2012, 91, 296-301.	5.0	9
84	Modulation of efflux proteins by electromagnetic field for delivering azidothymidine and saquinavir into the brain. Colloids and Surfaces B: Biointerfaces, 2012, 91, 291-295.	5.0	12
85	Chondrogenesis in scaffolds with surface modification of elastin and poly-l-lysine. Colloids and Surfaces B: Biointerfaces, 2012, 93, 85-91.	5.0	18
86	Cartilage regeneration by culturing chondrocytes in scaffolds grafted with TATVHL peptide. Colloids and Surfaces B: Biointerfaces, 2012, 93, 235-240.	5.0	10
87	Material-driven differentiation of induced pluripotent stem cells in neuron growth factor-grafted poly(ε-caprolactone)-poly(β-hydroxybutyrate) scaffolds. Biomaterials, 2012, 33, 5672-5682.	11.4	44
88	Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide- <i>co</i> -glycolide) nanoparticles. Nanomedicine, 2011, 6, 1011-1026.	3.3	62
89	Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells. Colloids and Surfaces B: Biointerfaces, 2011, 85, 131-137.	5.0	52
90	Transport of saquinavir across human brain-microvascular endothelial cells by poly(lactide-co-glycolide) nanoparticles with surface poly-(Î ³ -glutamic acid). International Journal of Pharmaceutics, 2011, 416, 365-375.	5.2	37

#	Article	IF	CITATIONS
91	Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide) nanoparticles for loading and releasing antiretroviral drug. Colloids and Surfaces B: Biointerfaces, 2011, 88, 158-164.	5.0	22
92	EDL configuration on a dissimilarly charged protrusion array via double Fourier series and perturbation method. Colloids and Surfaces B: Biointerfaces, 2011, 88, 527-533.	5.0	0
93	Expression of ornithine decarboxylase during the transport of saquinavir across the blood–brain barrier using composite polymeric nanocarriers under an electromagnetic field. Colloids and Surfaces B: Biointerfaces, 2011, 88, 627-634.	5.0	20
94	Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir. Colloids and Surfaces B: Biointerfaces, 2011, 88, 682-690.	5.0	44
95	Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Colloids and Surfaces B: Biointerfaces, 2011, 82, 624-631.	5.0	41
96	Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids and Surfaces B: Biointerfaces, 2011, 83, 299-306.	5.0	101
97	Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration. Colloids and Surfaces B: Biointerfaces, 2011, 82, 616-623.	5.0	33
98	Surface modification with peptide for enhancing chondrocyte adhesion and cartilage regeneration in porous scaffolds. Colloids and Surfaces B: Biointerfaces, 2011, 84, 63-70.	5.0	29
99	Peptide-modified inverted colloidal crystal scaffolds with bone marrow stromal cells in the treatment for spinal cord injury. Colloids and Surfaces B: Biointerfaces, 2011, 84, 198-205.	5.0	22
100	Surface coverage of didecyl dimethylammonium bromide on poly(lactide-co-glycolide) nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 84, 253-258.	5.0	11
101	Effect of human astrocytes on the characteristics of human brain-microvascular endothelial cells in the blood–brain barrier. Colloids and Surfaces B: Biointerfaces, 2011, 86, 225-231.	5.0	76
102	Solving EDL configuration near a dissimilarly charged protrusions surface model using perturbation method. Colloids and Surfaces B: Biointerfaces, 2011, 86, 370-377.	5.0	1
103	Regulation of endocytosis into human brain-microvascular endothelial cells by inhibition of efflux proteins. Colloids and Surfaces B: Biointerfaces, 2011, 87, 139-145.	5.0	18
104	Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials, 2011, 32, 3340-3350.	11.4	103
105	Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials, 2011, 32, 819-831.	11.4	46
106	Chondrogenesis of articular chondrocytes in hydroxyapatite/chitin/chitosan scaffolds supplemented with pituitary extract. Engineering in Life Sciences, 2010, 10, 65-74.	3.6	15
107	Capillary electrophoresis of bone marrow stromal cells with uptake of heparinâ€functionalized poly(lactideâ€coâ€glycolide) nanoparticles during differentiation towards neurons. Electrophoresis, 2010, 31, 315-323.	2.4	25
108	Study on safe air transporting velocity of nanograde aluminum, iron, and titanium. Journal of Loss Prevention in the Process Industries, 2010, 23, 308-311.	3.3	23

#	Article	IF	CITATIONS
109	Effect of bovine pituitary extract on the formation of neocartilage in chitosan/gelatin scaffolds. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 150-156.	5.3	17
110	Electrophoresis of human brain microvascular endothelial cells with uptake of cationic solid lipid nanoparticles: Effect of surfactant composition. Colloids and Surfaces B: Biointerfaces, 2010, 76, 286-291.	5.0	28
111	Effect of electromagnetic field on endocytosis of cationic solid lipid nanoparticles by human brain-microvascular endothelial cells. Journal of Drug Targeting, 2010, 18, 447-456.	4.4	37
112	Inverted Colloidal Crystal Scaffolds for Uniform Cartilage Regeneration. Biomacromolecules, 2010, 11, 731-739.	5.4	29
113	Tissueâ€engineered polyethylene oxide/chitosan scaffolds as potential substitutes for articular cartilage. Journal of Biomedical Materials Research - Part A, 2009, 91A, 277-287.	4.0	30
114	Application of polyethyleneimineâ€modified scaffolds to the regeneration of cartilaginous tissue. Biotechnology Progress, 2009, 25, 1459-1467.	2.6	24
115	Effect of electromagnetic field and surface modification on the electrical behavior of novel solid lipid nanoparticles covered with l-arginine. Colloids and Surfaces B: Biointerfaces, 2009, 71, 45-51.	5.0	17
116	Loading efficiency and surface conductance of heparin-modified poly(lactide-co-glycolide) nanoparticles. Colloids and Surfaces B: Biointerfaces, 2009, 71, 282-287.	5.0	14
117	Impact of arginine-modified solid lipid nanoparticles on the membrane charge of human brain-microvascular endothelial cells. Colloids and Surfaces B: Biointerfaces, 2009, 72, 201-207.	5.0	14
118	Differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Biomaterials, 2009, 30, 6604-6613.	11.4	55
119	Thermal characteristics of aluminum nanoparticles and oilcloths. Journal of Hazardous Materials, 2008, 152, 1002-1010.	12.4	3
120	Electromagnetic interference in the permeability of saquinavir across the blood–brain barrier using nanoparticulate carriers. International Journal of Pharmaceutics, 2008, 351, 271-281.	5.2	82
121	Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. International Journal of Pharmaceutics, 2008, 365, 206-13.	5.2	80
122	Effect of Glutamate on the Electrical Properties of Cationic Solid Lipid Nanoparticles Containing Stearylamine and Dioctadecyldimethyl Ammonium Bromide. Journal of Physical Chemistry B, 2008, 112, 4454-4460.	2.6	27
123	Cartilage Regeneration by Novel Polyethylene Oxide/Chitin/Chitosan Scaffolds. Biomacromolecules, 2008, 9, 2662-2669.	5.4	60
124	Evaluation of Surface Charge Density and Surface Potential by Electrophoretic Mobility for Solid Lipid Nanoparticles and Human Brainâ^'Microvascular Endothelial Cells. Journal of Physical Chemistry B, 2007, 111, 11228-11236.	2.6	40
125	Transport of stavudine, delavirdine, and saquinavir across the blood–brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. International Journal of Pharmaceutics, 2007, 340, 143-152.	5.2	145
126	Effects of Gel Concentration, Human Fibronectin, and Cation Supplement on the Tissue-Engineered Cartilage. Biotechnology Progress, 2007, 23, 238-245.	2.6	22

#	Article	IF	CITATIONS
127	Electrophoretic Mobility, Zeta Potential, and Fixed Charge Density of Bovine Knee Chondrocytes, Methyl Methacrylateâ~Sulfopropyl Methacrylate, Polybutylcyanoacrylate, and Solid Lipid Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 2202-2208.	2.6	40
128	Effects of Composition, Solvent, and Salt Particles on the Physicochemical Properties of Polyglycolide/Poly(lactide-co-glycolide) Scaffolds. Biotechnology Progress, 2006, 22, 1664-1670.	2.6	9
129	Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate–sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. International Journal of Pharmaceutics, 2006, 327, 160-169.	5.2	106
130	Effect of genipin-crosslinked chitin-chitosan scaffolds with hydroxyapatite modifications on the cultivation of bovine knee chondrocytes. Biotechnology and Bioengineering, 2006, 95, 132-144.	3.3	74
131	Effects of Composition, Solvent, and Salt Particles on the Physicochemical Properties of Polyglycolide/Poly(lactide-co-glycolide) Scaffolds. Biotechnology Progress, 2006, 22, 1664-1670.	2.6	35
132	Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles. International Journal of Pharmaceutics, 2005, 290, 161-172.	5.2	58
133	Critical coagulation concentration for a suspension of cation-absorptive biocolloids. Colloids and Surfaces B: Biointerfaces, 2005, 46, 218-225.	5.0	3
134	Application of Bovine Pituitary Extract and Polyglycolide/Poly(lactide-co-glycolide) Scaffold to the Cultivation of Bovine Knee Chondrocytes. Biotechnology Progress, 2005, 21, 1708-1715.	2.6	20
135	Deposition of cation-absorptive biocolloids onto a charged surface. Journal of Colloid and Interface Science, 2005, 288, 36-44.	9.4	4
136	Electrophoresis of a Biocolloid Covered with a Cation-Absorptive Membrane. Journal of Physical Chemistry B, 2005, 109, 11727-11734.	2.6	6
137	Stability of a dispersion of particles covered by a charge-regulated membrane: effect of the sizes of charged species. Journal of Colloid and Interface Science, 2003, 262, 73-80.	9.4	6
138	Application of a Modified Gouyâ^'Chapman Theory to the Stability of a Biocolloidal Suspension. Langmuir, 2003, 19, 5942-5948.	3.5	4
139	Effects of sizes of charged species on the flocculation of biocolloids: Absorption of cations in membrane layer. Journal of Chemical Physics, 2003, 118, 398-406.	3.0	10
140	Effects of particulate curvature and sizes of charged species on the adsorption of a biocolloid bearing nonuniformly distributed fixed charges. Journal of Chemical Physics, 2003, 118, 8023-8032.	3.0	9
141	Interactions between a Particle Covered by an Ion-Penetrable Charged Membrane and a Charged Surface:Â A Modified Gouyâ^Chapman Theory. Langmuir, 2002, 18, 2789-2794.	3.5	11
142	Deposition of Charge-Regulated Biocolloids on a Charged Surface. Journal of Physical Chemistry B, 2002, 106, 4255-4260.	2.6	6
143	Effect of Ionic Sizes on Critical Coagulation Concentration:Â Particles Covered by a Charge-Regulated Membrane. Journal of Physical Chemistry B, 2002, 106, 4269-4275.	2.6	11
144	Effect of Ionic Sizes on the Electrophoretic Mobility of a Particle with a Charge-Regulated Membrane in a General Electrolyte Solution, Journal of Physical Chemistry B, 2002, 106, 2117-2122	2.6	14

#	Article	IF	CITATIONS
145	Deposition of Biocolloids on a Charged Collector Surface:Â An Ion-Penetrable Membrane Model. Langmuir, 2001, 17, 3466-3471.	3.5	6
146	Electrical interaction between two cylinders with an ion-penetrable charged membrane in an oil/water interface. Colloids and Surfaces B: Biointerfaces, 2001, 21, 265-272.	5.0	3
147	Electrical Interactions between Two Ion-Penetrable Charged Membranes:Â Effect of Sizes of Charged Species. Langmuir, 2000, 16, 6233-6239.	3.5	16
148	Modified Göuy–Chapman theory for an ion-penetrable charged membrane. Journal of Chemical Physics, 1999, 111, 4807-4816.	3.0	17
149	Dynamic stability ratio of a colloidal dispersion. Chemical Physics, 1999, 250, 285-294.	1.9	5
150	Double-Layer Properties of an Ion-Penetrable Charged Membrane:Â Effect of Sizes of Charged Species. Journal of Physical Chemistry B, 1999, 103, 9743-9748.	2.6	19
151	Electrical Properties of Charged Cylindrical and Spherical Surfaces in a General Electrolyte Solution. Langmuir, 1999, 15, 6244-6255.	3.5	5
152	Electrical properties of a charged surface in a general electrolyte solution. Chemical Physics, 1998, 236, 1-14.	1.9	6
153	Adsorption of a Charge-Regulated Particle to a Charged Surface. Langmuir, 1997, 13, 4372-4376.	3.5	14
154	The Critical Coagulation Concentration of Counterions: Spherical Particles in Asymmetric Electrolyte Solutions. Journal of Colloid and Interface Science, 1997, 185, 530-537.	9.4	41
155	Dynamic Interactions of Two Electrical Double Layers. Journal of Colloid and Interface Science, 1997, 195, 388-394.	9.4	32
156	The Stability Ratio for a Dispersion of Particles Covered by an Ion-Penetrable Charged Membrane. Journal of Colloid and Interface Science, 1996, 183, 184-193.	9.4	11
157	The Electrostatic Interaction Force between a Charge-Regulated Particle and a Rigid Surface. Journal of Colloid and Interface Science, 1996, 183, 194-198.	9.4	22
158	Net Penetration Charges of an Ion-Penetrable Membrane in a General Electrolyte Solution. Journal of Colloid and Interface Science, 1995, 176, 256-263.	9.4	4
159	Approximate Analytical Expression for Surface Potential as a Function of Surface Charge Density. Journal of Colloid and Interface Science, 1995, 170, 220-228.	9.4	8
160	An Extension of the Schulze-Hardy Rule to Asymmetric Electrolytes. Journal of Colloid and Interface Science, 1995, 171, 254-255.	9.4	25
161	Properties of a Double Layer with Asymmetric Electrolytes: Cylindrical and Spherical Particles with an Ion-Penetrable Membrane. Journal of Colloid and Interface Science, 1995, 171, 331-339.	9.4	3
162	An Algorithm for the Calculation of the Electrostatic Potential Distribution of Ion-Penetrable Membranes Carrying Fixed Charges. Journal of Colloid and Interface Science, 1995, 171, 483-489.	9.4	3

#	Article	IF	CITATIONS
163	Critical Coagulation Concentration of Cations for Negatively Charged Particles with an Ion-Penetrable Surface Layer. Journal of Colloid and Interface Science, 1995, 174, 250-257.	9.4	4
164	Properties of a double layer with asymmetric electrolytes: ion-penetrable membrane carrying nonuniformly distributed fixed charges. Journal of Membrane Science, 1995, 108, 107-119.	8.2	6
165	Solution to the Poisson–Boltzmann equation for particles covered by an ion-penetrable charged membrane. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1223-1228.	1.7	9
166	Interactions between a charge-regulated particle and a charged surface. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4093.	1.7	9
167	Electrostatic interaction between a charge-regulated particle and a solid surface in electrolyte solution: effect of cationic electrolytes. Colloid and Polymer Science, 1994, 272, 946-954.	2.1	14
168	Approximate Analytical Expressions for the Properties of a Double Layer with Asymmetric Electrolytes: Ion-Penetrable Charged Membranes. Journal of Colloid and Interface Science, 1994, 166, 208-214.	9.4	20
169	Approximate Analytical Expressions for the Properties of an Electrical Double Layer with Asymmetric Electrolytes: Cylindrical and Spherical Geometries. Journal of Colloid and Interface Science, 1994, 167, 35-46.	9.4	15
170	An Algorithm for the Calculation of the Electrostatic Force between Identical Charged Surfaces in Electrolytes. Journal of Colloid and Interface Science, 1993, 156, 250-252.	9.4	6
171	Approximate analytical expressions for the properties of an electrical double layer with asymmetric electrolytes. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1229.	1.7	13
172	The pore structure of chrominophosphate catalysts. Catalysis Letters, 1992, 13, 137-142.	2.6	3