Ravindar Kontham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5189803/publications.pdf

Version: 2024-02-01

623574 610775 39 663 14 24 citations g-index h-index papers 39 39 39 648 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A silver-catalyzed [3 + 3]-annulation cascade of alkynyl alcohols and $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones for the regioselective assembly of chromanes. Organic Chemistry Frontiers, 2022, 9, 802-809.	2.3	5
2	Studies directed toward the synthesis of hedycoropyrans: total synthesis of des-hydroxy (â^')-hedycoropyran B (<i>ent</i> -rhoiptelol B). Organic and Biomolecular Chemistry, 2022, 20, 444-463.	1.5	6
3	Ready Access to Benzannulated [5,5]-Oxaspirolactones Using Au(III)-Catalyzed Cascade Cyclizations. Journal of Organic Chemistry, 2022, 87, 3025-3041.	1.7	9
4	Enceleamycins A–C, Furo-Naphthoquinones from <i>Amycolatopsis</i> sp. MCC0218: Isolation, Structure Elucidation, and Antimicrobial Activity. Journal of Natural Products, 2022, 85, 1267-1273.	1.5	4
5	Strategies for the synthesis of furo-pyranones and their application in the total synthesis of related natural products. Organic Chemistry Frontiers, 2021, 8, 2110-2162.	2.3	12
6	Bismuth(<scp>iii</scp>)-catalyzed bis-cyclization of propargylic diol-esters: a unified approach for the synthesis of [5,5]- and [6,5]-oxaspirolactones. Organic and Biomolecular Chemistry, 2021, 19, 6618-6622.	1.5	7
7	Stereoselective Total Synthesis of (\hat{A}_{\pm}) -Pleurospiroketals A and B. Journal of Organic Chemistry, 2021, 86, 13572-13582.	1.7	9
8	Total Synthesis of Beshanzuenone D and Its Epimers and Abiespiroside A. Organic Letters, 2020, 22, 8561-8565.	2.4	14
9	Recent advances in the synthesis of oxaspirolactones and their application in the total synthesis of related natural products. Organic and Biomolecular Chemistry, 2019, 17, 7270-7292.	1.5	22
10	TiCl4-n-Bu3N-mediated cascade annulation of ketones with \hat{l}_{\pm} -ketoesters: a facile synthesis of highly substituted fused \hat{l}^3 -alkylidene-butenolides. Organic and Biomolecular Chemistry, 2019, 17, 5749-5759.	1.5	6
11	Fe(III)-Catalyzed Diastereoselective Friedel–Crafts Alkylation–Hemiketalization–Lactonization Cascade for the Synthesis of Polycyclic Bridged 2-Chromanol Lactones. Organic Letters, 2019, 21, 2629-2633.	2.4	7
12	Bismuth(<scp>iii</scp>)-catalyzed cycloisomerization and (hetero)arylation of alkynols: simple access to 2-(hetero)aryl tetrahydrofurans and tetrahydropyrans. Organic and Biomolecular Chemistry, 2018, 16, 3229-3240.	1.5	14
13	Synthesis of Furo[2,3- <i>b</i>]pyran-2-ones through Ag(I)- or Ag(I)–Au(I)-Catalyzed Cascade Annulation of Alkynols and α-Ketoesters. Organic Letters, 2018, 20, 872-875.	2.4	29
14	Four-Step Total Synthesis of (+)-Yaoshanenolides A and B. ACS Omega, 2018, 3, 7036-7045.	1.6	13
15	Lewis acid catalyzed cascade annulation of alkynols with \hat{l}_{\pm} -ketoesters: a facile access to \hat{l}^3 -spiroketal- \hat{l}^3 -lactones. Chemical Communications, 2017, 53, 6641-6644.	2.2	35
16	Anionic Polycyclization Entry to Tricycles Related to Quassinoids and Terpenoids: A Stereocontrolled Total Synthesis of (+)-Cassaine. Journal of Organic Chemistry, 2014, 79, 7979-7999.	1.7	16
17	Synthesis of the Antiproliferative Agent Hippuristanol and Its Analogues from Hydrocortisone via Hg(II)-Catalyzed Spiroketalization: Structure–Activity Relationship. Journal of Medicinal Chemistry, 2014, 57, 2511-2523.	2.9	15
18	Total Synthesis of (+)-Cassaine Utilizing an Anionic Polycyclization Strategy. Organic Letters, 2013, 15, 6270-6273.	2.4	20

#	Article	IF	CITATIONS
19	A formal stereoselective synthesis of (â^')-brevisamide. Tetrahedron Letters, 2013, 54, 3227-3229.	0.7	11
20	Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A. Blood Cancer Journal, 2013, 3, e128-e128.	2.8	52
21	Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacology & David Suppression of eukaryotic initiation o	1.0	24
22	Stereoselective Total Synthesis of Putaminoxin. Synthesis, 2012, 2012, 585-590.	1.2	5
23	Synthesis of the Antiproliferative Agent Hippuristanol and Its Analogues via Suárez Cyclizations and Hg(II)-Catalyzed Spiroketalizations. Journal of Organic Chemistry, 2011, 76, 1269-1284.	1.7	48
24	A Highly Efficient Access to Spiroketals, Mono-unsaturated Spiroketals, and Furans: Hg(II)-Catalyzed Cyclization of Alkyne Diols and Triols. Organic Letters, 2011, 13, 3178-3181.	2.4	57
25	Total Synthesis of (+)â€Bourgeanic Acid Utilizing Desymmetrization Strategy. European Journal of Organic Chemistry, 2011, 2011, 58-61.	1.2	19
26	Concise Total Synthesis of (-)-cis-Aerangis Lactone and (-)-cis-Cognac Lactone. Synthesis, 2011, 2011, 3168-3172.	1.2	10
27	The Stereoselective Total Synthesis of (6 <i>S</i>)â€2â€hydroxyâ€6â€phenylhexyl]â€2 <i>H</i> â€pyranâ€2â€one <cyclization. 1432-1438.<="" 2010,="" 93,="" acta,="" chimica="" helvetica="" td=""><td>i>via⊕rins</td><td></td></cyclization.>	i>v ia⊕ rins	
28	Total Synthesis of Aculeatins A and B from <scp>L</scp> â€Malic Acid. Helvetica Chimica Acta, 2010, 93, 2426-2432.	1.0	6
29	Total Synthesis of (+)-Aculeatin D and (+)-6-epi-Aculeatin D. Synlett, 2010, 2010, 51-54.	1.0	13
30	Stereoseletive Total Synthesis of 11-α- and 11-β-Methoxycurvularins. Synthesis, 2010, 2010, 797-802.	1.2	5
31	Efficient Synthetic Approach to Potent Antiproliferative Agent Hippuristanol via Hg(II)-Catalyzed Spiroketalization. Organic Letters, 2010, 12, 4420-4423.	2.4	45
32	Total Synthesis of Xestodecalactone C from l-Malic Acid. Synthesis, 2009, 2009, 3157-3161.	1.2	10
33	Total Synthesis of (+)-Aspicilin from d-Mannitol. Synlett, 2009, 2009, 2828-2830.	1.0	12
34	Stereoselective total synthesis of (+)-mueggelone, a novel inhibitor of fish development. Tetrahedron Letters, 2008, 49, 2848-2850.	0.7	18
35	First Concise Total Synthesis of 5‣piâ€prelactone B. Synthetic Communications, 2008, 38, 1389-1397.	1.1	11
36	The Hydroamination of Unactivated Alkenes with Sulfonamides Catalyzed by Phosphomolybdic Acid/SiO2. Letters in Organic Chemistry, 2008, 5, 651-654.	0.2	9

3

#	Article	IF	CITATIONS
37	A Formal Stereoselective Synthesis of (-)-Maurenone. Synlett, 2007, 2007, 1957-1959.	1.0	7
38	Hydrothiolation of Unactivated Alkynes Catalyzed by Indium(III) Bromide. Chemistry Letters, 2007, 36, 1474-1475.	0.7	41
39	1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo-[2,2,2]octane Bis(tetrafluoroborate) as Novel and Efficient Reagent for the Conjugate Addition of Indoles to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones. Chemistry Letters, 2007, 36, 1056-1057.	0.7	4