List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5188933/publications.pdf Version: 2024-02-01

Ι μις Μισλιτ

#	Article	IF	CITATIONS
1	Polarized Cell Growth in Higher Plants. Annual Review of Cell and Developmental Biology, 2001, 17, 159-187.	9.4	670
2	Filamin A (FLNA) is required for cell–cell contact in vascular development and cardiac morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19836-19841.	7.1	306
3	Actin Polymerization Is Essential for Pollen Tube Growth. Molecular Biology of the Cell, 2001, 12, 2534-2545.	2.1	280
4	The Regulation of Actin Organization by Actin-Depolymerizing Factor in Elongating Pollen Tubes[W]. Plant Cell, 2002, 14, 2175-2190.	6.6	230
5	Lifeact-mEGFP Reveals a Dynamic Apical F-Actin Network in Tip Growing Plant Cells. PLoS ONE, 2009, 4, e5744.	2.5	196
6	Rearrangement of Actin Microfilaments in Plant Root Hairs Responding to Rhizobium etli Nodulation Signals1. Plant Physiology, 1998, 116, 871-877.	4.8	180
7	Rab2 GTPase Regulates Vesicle Trafficking between the Endoplasmic Reticulum and the Golgi Bodies and Is Important to Pollen Tube Growth[W]. Plant Cell, 2002, 14, 945-962.	6.6	178
8	Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13341-13346.	7.1	158
9	Myosin XI Is Essential for Tip Growth in <i>Physcomitrella patens</i> Â. Plant Cell, 2010, 22, 1868-1882.	6.6	142
10	Exocytosis Precedes and Predicts the Increase in Growth in Oscillating Pollen Tubes. Plant Cell, 2009, 21, 3026-3040.	6.6	137
11	Profilin Is Essential for Tip Growth in the Moss <i>Physcomitrella patens</i> . Plant Cell, 2007, 19, 3705-3722.	6.6	131
12	Actin and pollen tube growth. Protoplasma, 2001, 215, 64-76.	2.1	129
13	The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis. Planta, 2000, 210, 836-843.	3.2	127
14	Characterization and localization of profilin in pollen grains and tubes ofLilium longiflorum. , 1997, 36, 323-338.		113
15	Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant Journal, 2008, 54, 863-875.	5.7	107
16	The 135 kDa actin-bundling protein fromLilium longiflorum pollen is the plant homologue of villin. Protoplasma, 1999, 209, 283-291.	2.1	82
17	Plant 115-kDa Actin-Filament Bundling Protein, P-115-ABP, is a Homologue of Plant Villin and is Widely Distributed in Cells. Plant and Cell Physiology, 2003, 44, 1088-1099.	3.1	74
18	Physcomitrella patens: a model for tip cell growth and differentiation. Current Opinion in Plant Biology, 2012, 15, 625-631.	7.1	74

#	Article	IF	CITATIONS
19	Rac1-null Mouse Embryonic Fibroblasts Are Motile and Respond to Platelet-derived Growth Factor. Molecular Biology of the Cell, 2006, 17, 2377-2390.	2.1	73
20	Actin Interacting Protein1 and Actin Depolymerizing Factor Drive Rapid Actin Dynamics in <i>Physcomitrella patens</i> Â. Plant Cell, 2011, 23, 3696-3710.	6.6	70
21	Profilin in Phaseolus vulgaris is encoded by two genes (only one expressed in root nodules) but multiple isoforms are generated in vivo by phosphorylation on tyrosine residues. Plant Journal, 1999, 19, 497-508.	5.7	64
22	Endogenous RhoG is dispensable for integrin-mediated cell spreading but contributes to Rac-independent migration. Journal of Cell Science, 2008, 121, 1981-1989.	2.0	48
23	Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC Plant Biology, 2012, 12, 70.	3.6	48
24	Purification, Characterization, and cDNA Cloning of Profilin from Phaseolus vulgaris. Plant Physiology, 1995, 108, 115-123.	4.8	47
25	Phylogenetic Analysis of the Kinesin Superfamily from Physcomitrella. Frontiers in Plant Science, 2012, 3, 230.	3.6	47
26	Apical myosin <scp>XI</scp> anticipates <scp>F</scp> â€actin during polarized growth of <i><scp>P</scp>hyscomitrella patens</i> cells. Plant Journal, 2013, 73, 417-428.	5.7	47
27	Efficient Polyethylene Glycol (PEG) Mediated Transformation of the Moss Physcomitrella patens . Journal of Visualized Experiments, 2011, , .	0.3	39
28	Unique Molecular Identifiers reveal a novel sequencing artefact with implications for RNA-Seq based gene expression analysis. Scientific Reports, 2018, 8, 13121.	3.3	35
29	Orchestrating cell morphology from the inside out – using polarized cell expansion in plants as a model. Current Opinion in Cell Biology, 2020, 62, 46-53.	5.4	32
30	F-Actin Mediated Focusing of Vesicles at the Cell Tip Is Essential for Polarized Growth. Plant Physiology, 2018, 176, 352-363.	4.8	30
31	Profilin inhibits pollen tube growth through actin-binding, but not poly-l-proline-binding. Planta, 2004, 218, 906-915.	3.2	27
32	The kinesinâ€like proteins, KAC1/2, regulate actin dynamics underlying chloroplast lightâ€avoidance in <i>Physcomitrella patens</i> . Journal of Integrative Plant Biology, 2015, 57, 106-119.	8.5	27
33	Myosin XI localizes at the mitotic spindle and along the cell plate during plant cell division in Physcomitrella patens. Biochemical and Biophysical Research Communications, 2018, 506, 409-421.	2.1	26
34	Rapid Screening for Temperature-Sensitive Alleles in Plants. Plant Physiology, 2009, 151, 506-514.	4.8	23
35	Actin Filaments Purified from Tobacco Cultured BY-2 Cells Can Be Translocated by Plant Myosin. Plant and Cell Physiology, 1999, 40, 1167-1171.	3.1	22
36	Tyrosine phosphatase PTPα regulates focal adhesion remodeling through Rac1 activation. American Journal of Physiology - Cell Physiology, 2008, 294, C931-C944.	4.6	22

#	Article	IF	CITATIONS
37	Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens. Scientific Reports, 2018, 8, 735.	3.3	21
38	Changes of the actin filament system in the green algaMicrasterias denticulata induced by different cytoskeleton inhibitors. Protoplasma, 2000, 212, 206-216.	2.1	19
39	Chitin Triggers Calcium-Mediated Immune Response in the Plant Model <i>Physcomitrella patens</i> . Molecular Plant-Microbe Interactions, 2020, 33, 911-920.	2.6	18
40	Actin isoforms in non-infected roots and symbiotic root nodules of Phaseolus vulgaris L Planta, 1994, 193, 51.	3.2	17
41	Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. PLoS Genetics, 2018, 14, e1007221.	3.5	17
42	Nuclear localization of profilin during the cell cycle in Tradescantia virginiana stamen hair cells. Protoplasma, 2003, 222, 85-95.	2.1	14
43	Rabâ€E and its interaction with myosin XI are essential for polarised cell growth. New Phytologist, 2021, 229, 1924-1936.	7.3	13
44	Characterization of Cell Boundary and Confocal Effects Improves Quantitative FRAP Analysis. Biophysical Journal, 2018, 114, 1153-1164.	0.5	12
45	Morphological Analysis of Cell Growth Mutants in Physcomitrella. Methods in Molecular Biology, 2014, 1080, 201-213.	0.9	12
46	Quantitative cell biology of tip growth in moss. Plant Molecular Biology, 2021, 107, 227-244.	3.9	11
47	Automated Image Acquisition and Morphological Analysis of Cell Growth Mutants in Physcomitrella patens. Methods in Molecular Biology, 2019, 1992, 307-322.	0.9	10
48	<i>In vivo</i> Interactions between myosin XI, vesicles, and filamentous actin are fast and transient. Journal of Cell Science, 2020, 133, .	2.0	9
49	Actin in Pollen and Pollen Tubes. , 2000, , 323-345.		9
50	Robust Survival-Based RNA Interference of Gene Families Using in Tandem Silencing of Adenine Phosphoribosyltransferase. Plant Physiology, 2020, 184, 607-619.	4.8	8
51	Myosin XI drives polarized growth by vesicle focusing and local enrichment of F-actin in <i>Physcomitrium patens</i> . Plant Physiology, 2021, 187, 2509-2529.	4.8	4
52	The Motor Kinesin 4II Is Important for Growth and Chloroplast Light Avoidance in the Moss <i>Physcomitrella patens</i> . American Journal of Plant Sciences, 2017, 08, 791-809.	0.8	4
53	Inferring lateral tension distribution in wall structures of single cells. European Physical Journal Plus, 2020, 135, 1.	2.6	3
54	Understanding Boundary Effects and Confocal Optics Enables Quantitative FRAP Analysis in the Confined Geometries of Animal, Plant and Fungal Cells. Biophysical Journal, 2018, 114, 349a-350a.	0.5	2

#	Article	IF	CITATIONS
55	A GPU accelerated virtual scanning confocal microscope. , 2014, , .		1
56	Coarse-Grained Modeling of Organelle Motility in Living Cells. Biophysical Journal, 2011, 100, 600a.	0.5	0
57	Coarse-Grained Model of Cooperative Chloroplast Transport in Moss. Biophysical Journal, 2012, 102, 378a.	0.5	0
58	Microtubule Dependent Anomalous Diffusion of Chloroplasts in Moss. Biophysical Journal, 2013, 104, 650a-651a.	0.5	0
59	Measurement of the Persistence Length of Cytoskeletal Filaments using Curvature Distributions. Biophysical Journal, 2017, 112, 566a.	0.5	0
60	Boundary Effects in FRAP Recovery in the Confined Geometries of Animal, Plant and Fungal Cells. Biophysical Journal, 2017, 112, 583a.	0.5	0
61	F-Actin Meditated Focusing of Vesicles at the Cell Tip is Essential for Polarized Growth. Biophysical Journal, 2018, 114, 648a.	0.5	0
62	Molecular biology of mosses. Plant Molecular Biology, 2021, 107, 209-211.	3.9	0