Joachim Kohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5188568/publications.pdf Version: 2024-02-01

Іоленім Конм

#	Article	IF	CITATIONS
1	Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials, 1991, 12, 292-304.	11.4	713
2	Designing Biomaterials for 3D Printing. ACS Biomaterials Science and Engineering, 2016, 2, 1679-1693.	5.2	581
3	Cytoskeleton-based forecasting of stem cell lineage fates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 610-615.	7.1	258
4	A Combinatorial Approach for Polymer Design. Journal of the American Chemical Society, 1997, 119, 4553-4554.	13.7	254
5	Polymers derived from the amino acid l-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Advanced Drug Delivery Reviews, 2003, 55, 447-466.	13.7	223
6	PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration. Biomaterials, 2000, 21, 511-520.	11.4	208
7	Structure-property correlations in a combinatorial library of degradable biomaterials. , 1998, 42, 66-75.		167
8	Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. Journal of Biomedical Materials Research Part B, 1994, 28, 919-930.	3.1	162
9	Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies. Journal of Controlled Release, 2011, 149, 159-167.	9.9	158
10	The use of cyanogen bromide and other novel cyanylating agents for the activation of polysaccharide resins. Applied Biochemistry and Biotechnology, 1984, 9, 285-305.	2.9	128
11	Optical Biosensors for Virus Detection: Prospects for SARSâ€CoVâ€2/COVIDâ€19. ChemBioChem, 2021, 22, 1176-1189.	2.6	120
12	Trends in the Development of Bioresorbable Polymers for Medical Applications. Journal of Biomaterials Applications, 1992, 6, 216-250.	2.4	118
13	Tyrosine-derived polycarbonates: Backbone-modified ?pseudo?-poly(amino acids) designed for biomedical applications. Biopolymers, 1992, 32, 411-417.	2.4	117
14	New approaches to biomaterials design. Nature Materials, 2004, 3, 745-747.	27.5	117
15	The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. Journal of Materials Science: Materials in Medicine, 2015, 26, 226.	3.6	113
16	Small changes in polymer chemistry have a large effect on the bone–implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. Biomaterials, 1999, 20, 2203-2212.	11.4	106
17	Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid). , 1996, 31, 35-41.		98
18	Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Advanced Functional Materials, 2011, 21, 2624-2632.	14.9	95

#	Article	IF	CITATIONS
19	Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1039-1056.	3.5	94
20	Mitochondria-Targeted Hydroxyapatite Nanoparticles for Selective Growth Inhibition of Lung Cancer in Vitro and in Vivo. ACS Applied Materials & Interfaces, 2016, 8, 25680-25690.	8.0	94
21	Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation. , 1998, 41, 443-454.		93
22	Tyrosine–PEC-derived poly(ether carbonate)s as new biomaterials. Biomaterials, 1999, 20, 253-264.	11.4	91
23	A new approach to the rationale discovery of polymeric biomaterials. Biomaterials, 2007, 28, 4171-4177.	11.4	91
24	Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering. Acta Biomaterialia, 2016, 34, 133-142.	8.3	88
25	Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomaterialia, 2011, 7, 2483-2491.	8.3	87
26	Development of paclitaxel-TyroSpheres for topical skin treatment. Journal of Controlled Release, 2012, 163, 18-24.	9.9	87
27	Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: Study of model compounds. Biomaterials, 2000, 21, 2371-2378.	11.4	84
28	Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 971-986.	2.1	81
29	Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials, 2000, 21, 2379-2387.	11.4	75
30	Integration of Combinatorial Synthesis, Rapid Screening, and Computational Modeling in Biomaterials Development. Macromolecular Rapid Communications, 2004, 25, 127-140.	3.9	70
31	Polymerâ^'Drug Interactions in Tyrosine-Derived Triblock Copolymer Nanospheres: A Computational Modeling Approach. Molecular Pharmaceutics, 2009, 6, 1620-1627.	4.6	68
32	Synthesis, degradation and biocompatibility of tyrosine-derived polycarbonate scaffolds. Journal of Materials Chemistry, 2010, 20, 8885.	6.7	68
33	Comparison of the effect of ethylene oxide and ?-irradiation on selected tyrosine-derived polycarbonates and poly(L-lactic acid). Journal of Applied Polymer Science, 1997, 63, 1499-1510.	2.6	66
34	Effect of Tyrosine-Derived Triblock Copolymer Compositions on Nanosphere Self-Assembly and Drug Delivery. Biomacromolecules, 2007, 8, 998-1003.	5.4	66
35	Combinatorial Polymer Scaffold Libraries for Screening Cellâ€Biomaterial Interactions in 3D. Advanced Materials, 2008, 20, 2037-2043.	21.0	64
36	A comparison of the performance of mono- and bi-component electrospun conduits in a rat sciatic model. Biomaterials, 2014, 35, 8970-8982.	11.4	64

#	Article	IF	CITATIONS
37	Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: Validation of a new rapid screening technique. Journal of Biomedical Materials Research Part B, 2004, 68A, 496-503.	3.1	61
38	Viscoelastic Properties of Fibrinogen Adsorbed to the Surface of Biomaterials Used in Blood-Contacting Medical Devices. Langmuir, 2007, 23, 3298-3304.	3.5	61
39	Accurate predictions of cellular response using QSPR: a feasibility test of rational design of polymeric biomaterials. Polymer, 2004, 45, 7367-7379.	3.8	59
40	Hydrophobic Drug Delivery by Self-Assembling Triblock Copolymer-Derived Nanospheres. Biomacromolecules, 2005, 6, 2726-2731.	5.4	54
41	Antimicrobial Peptides Secreted From Human Cryopreserved Viable Amniotic Membrane Contribute to its Antibacterial Activity. Scientific Reports, 2017, 7, 13722.	3.3	53
42	Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates. Biomaterials, 2012, 33, 1699-1713.	11.4	51
43	Carbon Nanotube Fibers Are Compatible With Mammalian Cells and Neurons. IEEE Transactions on Nanobioscience, 2008, 7, 11-14.	3.3	50
44	Microfibrous substrate geometry as a critical trigger for organization, selfâ€renewal, and differentiation of human embryonic stem cells within synthetic 3â€dimensional microenvironments. FASEB Journal, 2012, 26, 3240-3251.	0.5	50
45	Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications. Journal of Biomedical Materials Research Part B, 1995, 29, 1337-1348.	3.1	49
46	Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion. Biomedical Microdevices, 2015, 17, 34.	2.8	49
47	Photocrosslinked hydrogels based on copolymers of poly(ethylene glycol) and lysine. Journal of Polymer Science Part A, 1994, 32, 1271-1281.	2.3	45
48	Ultrafast and fast bioerodible electrospun fiber mats for topical delivery of a hydrophilic peptide. Journal of Controlled Release, 2012, 161, 813-820.	9.9	45
49	Design, synthesis, and pr eliminary characterization of tyrosine-containing polyarylates: New biomaterials for medical applications. Journal of Biomaterials Science, Polymer Edition, 1994, 5, 496-510.	3.5	43
50	Degradable, drug-eluting stents: a new frontier for the treatment of coronary artery disease. Expert Review of Medical Devices, 2005, 2, 667-671.	2.8	43
51	PET-RAFT and SAXS: High Throughput Tools To Study Compactness and Flexibility of Single-Chain Polymer Nanoparticles. Macromolecules, 2019, 52, 8295-8304.	4.8	43
52	Opportunities for biomaterials to address the challenges of <scp>COVID</scp> â€19. Journal of Biomedical Materials Research - Part A, 2020, 108, 1974-1990.	4.0	43
53	Synergistic Combination of Bioactive Hydroxyapatite Nanoparticles and the Chemotherapeutic Doxorubicin to Overcome Tumor Multidrug Resistance. Small, 2021, 17, e2007672.	10.0	42
54	Osteogenic Differentiation of Pre-Osteoblasts on Biomimetic Tyrosine-Derived Polycarbonate Scaffolds. Biomacromolecules, 2011, 12, 3520-3527.	5.4	41

#	Article	IF	CITATIONS
55	Design of barrier coatings on kink-resistant peripheral nerve conduits. Journal of Tissue Engineering, 2016, 7, 204173141662947.	5.5	41
56	X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods. Biomaterials, 2008, 29, 1901-1911.	11.4	40
57	Evaluation of automated synthesis for chain and stepâ€growth polymerizations: Can robots replace the chemists?. Journal of Polymer Science Part A, 2009, 47, 49-58.	2.3	40
58	Formulation Strategy for the Delivery of Cyclosporine A: Comparison of Two Polymeric Nanospheres. Scientific Reports, 2015, 5, 13065.	3.3	40
59	Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats. Journal of Functional Biomaterials, 2017, 8, 1.	4.4	40
60	Competitive Adsorption of Plasma Proteins Using a Quartz Crystal Microbalance. ACS Applied Materials & Interfaces, 2016, 8, 13207-13217.	8.0	39
61	Paclitaxel in tyrosine-derived nanospheres as a potential anti-cancer agent: In vivo evaluation of toxicity and efficacy in comparison with paclitaxel in Cremophor. European Journal of Pharmaceutical Sciences, 2012, 45, 320-329.	4.0	37
62	Enzymatic Surface Erosion of High Tensile Strength Polycarbonates Based on Natural Phenols. Biomacromolecules, 2014, 15, 830-836.	5.4	36
63	Predicting fibrinogen adsorption to polymeric surfaces in silico: a combined method approach. Polymer, 2005, 46, 4296-4306.	3.8	35
64	Mandibular Jaw Bone Regeneration Using Human Dental Cell-Seeded Tyrosine-Derived Polycarbonate Scaffolds. Tissue Engineering - Part A, 2016, 22, 985-993.	3.1	35
65	Extracellular matrix derived from chondrocytes promotes rapid expansion of human primary chondrocytes in vitro with reduced dedifferentiation. Acta Biomaterialia, 2019, 85, 75-83.	8.3	35
66	Self-Assembly and Critical Aggregation Concentration Measurements of ABA Triblock Copolymers with Varying B Block Types: Model Development, Prediction, and Validation. Journal of Physical Chemistry B, 2016, 120, 3666-3676.	2.6	34
67	Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits. Journal of Materials Science: Materials in Medicine, 2017, 28, 79.	3.6	33
68	Characterization of the inflammatory response to biomaterials using a rodent air pouch model. , 2000, 50, 365-374.		32
69	Using Surrogate Modeling in the Prediction of Fibrinogen Adsorption onto Polymer Surfaces. Journal of Chemical Information and Computer Sciences, 2004, 44, 1088-1097.	2.8	31
70	Nontoxic Block Copolymer Nanospheres:Â Design and Characterization. Langmuir, 2004, 20, 11721-11725.	3.5	31
71	Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter, 2010, 6, 5196.	2.7	31
72	QSAR Models for the Analysis of Bioresponse Data from Combinatorial Libraries of Biomaterials. QSAR and Combinatorial Science, 2005, 24, 99-113.	1.4	30

#	Article	IF	CITATIONS
73	Stabilization of Phosphatidylserine/Phosphatidylethanolamine Liposomes with Hydrophilic Polymers Having Multiple "Sticky Feet― Langmuir, 2001, 17, 7713-7716.	3.5	29
74	Prediction of fibrinogen adsorption for biodegradable polymers: IntegrationÂof molecular dynamics and surrogate modeling. Polymer, 2007, 48, 5788-5801.	3.8	27
75	Functionalized nanospheres for targeted delivery of paclitaxel. Journal of Controlled Release, 2013, 171, 315-321.	9.9	27
76	Effects of Terminal Sterilization on PEGâ€Based Bioresorbable Polymers Used in Biomedical Applications. Macromolecular Materials and Engineering, 2016, 301, 1211-1224.	3.6	27
77	Cell type–specific extracellular matrix guided the differentiation of human mesenchymal stem cells in 3D polymeric scaffolds. Journal of Materials Science: Materials in Medicine, 2017, 28, 100.	3.6	27
78	Prediction of biological response for large combinatorial libraries of biodegradable polymers: Polymethacrylates as a test case. Polymer, 2008, 49, 2435-2439.	3.8	26
79	The fate of ultrafast degrading polymeric implants in the brain. Biomaterials, 2011, 32, 5543-5550.	11.4	26
80	Ethylene oxide's role as a reactive agent during sterilization: Effects of polymer composition and device architecture. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 532-540.	3.4	26
81	Designing Tyrosine-Derived Polycarbonate Polymers for Biodegradable Regenerative Type Neural Interface Capable of Neural Recording. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 204-212.	4.9	25
82	Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design. Sensors, 2016, 16, 330.	3.8	24
83	Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers. Journal of Biomedical Materials Research - Part A, 2017, 105, 2162-2170.	4.0	24
84	Variability of water uptake studies of biomedical polymers. Journal of Applied Polymer Science, 2011, 121, 1311-1320.	2.6	23
85	The Effect of Cryopreserved Human Placental Tissues on Biofilm Formation of Wound-Associated Pathogens. Journal of Functional Biomaterials, 2018, 9, 3.	4.4	23
86	Biocopolyesters of Poly(butylene succinate) Containing Long-Chain Biobased Glycol Synthesized with Heterogeneous Titanium Dioxide Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 10623-10632.	6.7	23
87	Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Materials Science and Engineering C, 2020, 108, 110505.	7.3	23
88	The study of water uptake in degradable polymers by thermally stimulated depolarization currents. Biomaterials, 1998, 19, 2347-2356.	11.4	22
89	UV laser-ablated surface textures as potential regulator of cellular response. Biointerphases, 2010, 5, 53-59.	1.6	22
90	Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Biomaterials Science, 2019, 7, 560-570.	5.4	22

#	Article	IF	CITATIONS
91	Evaluating the <i>in vivo</i> glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion. Journal of Neural Engineering, 2018, 15, 036002.	3.5	21
92	Polymeric Drug Delivery Systems. ACS Symposium Series, 1993, , 18-41.	0.5	20
93	Diphenolic Monomers Derived from the Natural Amino Acid α-L-Tyrosine: An Evaluation of Peptide Coupling Techniques. Journal of Bioactive and Compatible Polymers, 1995, 10, 327-340.	2.1	20
94	Synthetic polymeric substrates as potent proâ€oxidant versus antiâ€oxidant regulators of cytoskeletal remodeling and cell apoptosis. Journal of Cellular Physiology, 2009, 218, 549-557.	4.1	20
95	Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D. Journal of Functional Biomaterials, 2012, 3, 173-182.	4.4	20
96	Poly(ethylene glycol) enhances cell motility on protein-based poly(ethylene glycol)-polycarbonate substrates: A mechanism for cell-guided ligand remodeling. Journal of Biomedical Materials Research Part B, 2004, 69A, 114-123.	3.1	19
97	Cellular response to phase-separated blends of tyrosine-derived polycarbonates. Journal of Biomedical Materials Research - Part A, 2006, 76A, 491-502.	4.0	19
98	Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics. Acta Biomaterialia, 2016, 45, 98-109.	8.3	19
99	Computational Methods for the Development of Polymeric Biomaterials. Advanced Engineering Materials, 2010, 12, B3.	3.5	17
100	Alternating Multiblock Amphiphilic Copolymers of PEG and Tyrosine-Derived Diphenols. 1. Synthesis and Characterization. Macromolecules, 2002, 35, 9360-9365.	4.8	16
101	Synthesis and characterization of telechelic macromers containing fatty acid derivatives. Reactive and Functional Polymers, 2012, 72, 781-790.	4.1	16
102	Bioactive agarose carbonâ€nanotube composites are capable of manipulating brain–implant interface. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
103	Negative Outcomes of Poly(<scp>l</scp> -Lactic Acid) Fiber-Reinforced Scaffolds in an Ovine Total Meniscus Replacement Model. Tissue Engineering - Part A, 2016, 22, 1116-1125.	3.1	16
104	Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration. International Journal of Molecular Sciences, 2017, 18, 1104.	4.1	16
105	Surface characterization of tyrosine-derived polycarbonates. Journal of Applied Polymer Science, 1997, 63, 1467-1479.	2.6	15
106	An Innovative Laboratory Procedure to Expand Chondrocytes with Reduced Dedifferentiation. Cartilage, 2018, 9, 202-211.	2.7	15
107	Next-generation resorbable polymer scaffolds with surface-precipitated calcium phosphate coatings. International Journal of Energy Production and Management, 2015, 2, 1-8.	3.7	14

Process-structure-property relationships of erodable polymeric biomaterials, I: Poly(desaminotyrosyl) Tj ETQq0 0 0 rg BT /Overlock 10 Tf $\frac{1}{13}$

#	Article	IF	CITATIONS
109	The control of stem cell morphology and differentiation using three-dimensional printed scaffold architecture. MRS Communications, 2017, 7, 383-390.	1.8	13
110	Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery. Soft Matter, 2018, 14, 1327-1335.	2.7	13
111	Endogenous viable cells in lyopreserved amnion retain differentiation potential and anti-fibrotic activity in vitro. Acta Biomaterialia, 2019, 94, 330-339.	8.3	12
112	Adsorption of Fibrinogen and Fibronectin on Elastomeric Poly(butylene succinate) Copolyesters. Langmuir, 2019, 35, 8850-8859.	3.5	12
113	Thermal properties and enthalpy relaxation of tyrosine-derived polyarylates. Journal of Applied Polymer Science, 1997, 63, 1441-1448.	2.6	11
114	Organizational metrics of interchromatin speckle factor domains: integrative classifier for stem cell adhesion & lineage signaling. Integrative Biology (United Kingdom), 2015, 7, 435-446.	1.3	11
115	Exosomes Secreted from Amniotic Membrane Contribute to Its Anti-Fibrotic Activity. International Journal of Molecular Sciences, 2021, 22, 2055.	4.1	11
116	Study of relaxation mechanisms in structurally related biomaterials by thermally stimulated depolarization currents. Polymer, 2001, 42, 8671-8680.	3.8	10
117	High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation. Experimental Cell Research, 2017, 351, 11-23.	2.6	10
118	A multilayered scaffold for regeneration of smooth muscle and connective tissue layers. Journal of Biomedical Materials Research - Part A, 2021, 109, 733-744.	4.0	10
119	Self-Assembled Hydrogel Microparticle-Based Tooth-Germ Organoids. Bioengineering, 2022, 9, 215.	3.5	10
120	Alternating Multiblock Amphiphilic Copolymers of PEG and Tyrosine-Derived Diphenols. 2. Self-Assembly in Aqueous Solution and at Hydrophobic Surfaces. Macromolecules, 2002, 35, 9366-9371.	4.8	9
121	Computational modeling of inÂvitro biological responses on polymethacrylate surfaces. Polymer, 2011, 52, 2650-2660.	3.8	9
122	Molecular design and evaluation of biodegradable polymers using a statistical approach. Journal of Materials Science: Materials in Medicine, 2013, 24, 2529-2535.	3.6	9
123	Investigating the release of a hydrophobic peptide from matrices of biodegradable polymers: An integrated method approach. Polymer, 2013, 54, 3806-3820.	3.8	9
124	Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets. International Journal of Biomaterials, 2016, 2016, 1-10.	2.4	9
125	Tyrosineâ€derived polycarbonate nerve guidance tubes elicit proregenerative extracellular matrix deposition when used to bridge segmental nerve defects in swine. Journal of Biomedical Materials Research - Part A, 2021, 109, 1183-1195.	4.0	9
126	Ring opening polymerization of ε-caprolactone through water. Polymer Chemistry, 2021, 12, 159-164.	3.9	9

#	Article	IF	CITATIONS
127	Comprehensive hydrolytic degradation study of a new poly(ester-amide) used for total meniscus replacement. Polymer Degradation and Stability, 2021, 190, 109617.	5.8	9
128	Iodine inhibits antiadhesive effect of PEG: Implications for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 237-244.	3.4	8
129	A step toward engineering thick tissues: Distributing microfibers within 3D printed frames. Journal of Biomedical Materials Research - Part A, 2020, 108, 581-591.	4.0	8
130	A suspended carbon fiber culture to model myelination by human Schwann cells. Journal of Materials Science: Materials in Medicine, 2017, 28, 57.	3.6	7
131	Temperature-Activated PEG Surface Segregation Controls the Protein Repellency of Polymers. Langmuir, 2019, 35, 9769-9776.	3.5	7
132	Tyrosol Derived Poly(ester-arylate)s for Sustained Drug Delivery from Microparticles. ACS Biomaterials Science and Engineering, 2021, 7, 2580-2591.	5.2	7
133	Biomaterials science at a crossroads: are current product liability laws in the United States hampering innovation and the development of safer medical implants?. Pharmaceutical Research, 1996, 13, 815-819.	3.5	6
134	Poly(Desaminotyrosyl-tyrosine Carbonate Ethyl Ester) Studied by XPS. Surface Science Spectra, 2002, 9, 6-11.	1.3	6
135	"Ruffled border―formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over. Journal of Materials Science: Materials in Medicine, 2018, 29, 38.	3.6	6
136	Influence of the threeâ€dimensional culture of human bone marrow mesenchymal stromal cells within a macroporous polysaccharides scaffold on Pannexin 1 and Pannexin 3. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1936-e1949.	2.7	6
137	Promotion of dispersion and anticancer efficacy of hydroxyapatite nanoparticles by the adsorption of fetal bovine serum. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	6
138	Acid-Containing Tyrosine-Derived Polycarbonates: Wettability and Surface Reactivity. Macromolecular Symposia, 2004, 216, 87-98.	0.7	5
139	Reciprocal nerve staining (RNS) for the concurrent detection of choline acetyltransferase and myelin basic protein on paraffin-embedded sections. Journal of Neuroscience Methods, 2019, 311, 235-238.	2.5	5
140	Bioresorbable tyrosolâ€derived poly(esterâ€arylate)s with tunable properties. Journal of Polymer Science, 2021, 59, 860-869.	3.8	5
141	Desaminotyrosyl—Tyrosine Alkyl Esters. ACS Symposium Series, 1991, , 155-169.	0.5	4
142	Polymer-Protected Liposomes: Association of Hydrophobically-Modified PEG with Liposomes. ACS Symposium Series, 2006, , 95-120.	0.5	4
143	Multiscale analysis of water uptake and erosion in biodegradable polyarylates. Polymer Degradation and Stability, 2012, 97, 410-420.	5.8	4
144	Synthesis and Characterization of Fatty Acid/Amino Acid Self-Assemblies. Journal of Functional Biomaterials, 2014, 5, 211-231.	4.4	4

#	Article	IF	CITATIONS
145	Disassembly of Nanospheres with a PEG Shell upon Adsorption onto PEGylated Substrates. Langmuir, 2020, 36, 232-241.	3.5	4
146	Structural Investigations of Polycarbonates whose Mechanical and Erosion Behavior Can Be Controlled by Their Isomer Sequence. Macromolecules, 2020, 53, 9878-9889.	4.8	4
147	Porphyrin-Loaded TyroSpheres for the Intracellular Delivery of Drugs and Photoinduced Oxidant Species. Molecular Pharmaceutics, 2020, 17, 2911-2924.	4.6	4
148	Tag-Free Site-Specific BMP-2 Immobilization with Long-Acting Bioactivities via a Simple Sugar–Lectin Interaction. ACS Biomaterials Science and Engineering, 2020, 6, 2219-2230.	5.2	4
149	Nanosphere size control by varying the ratio of poly(ester amide) block copolymer blends. Journal of Colloid and Interface Science, 2022, 623, 247-256.	9.4	4
150	Crystal structure and nmr conformation of a cyclic pseudotetrapeptide containing urethane backbone linkages. Biopolymers, 1994, 34, 403-414.	2.4	3
151	Biomaterials Informatics. , 0, , 163-200.		3
152	Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release. Journal of Functional Biomaterials, 2012, 3, 745-759.	4.4	3
153	Using Non-linear Regression to Predict Bioresponse in a Combinatorial Library of Biodegradable Polymers. Materials Research Society Symposia Proceedings, 2003, 804, 171.	0.1	2
154	New poly(ester-amide) copolymers modified with polyether (PEAE) for anticancer drug encapsulation. Journal of Microencapsulation, 2016, 33, 702-711.	2.8	2
155	Tyrosol-Derived Biodegradable Inks with Tunable Properties for 3D Printing. ACS Biomaterials Science and Engineering, 2021, 7, 4454-4462.	5.2	2
156	Hybrid Bone Scaffold Induces Bone Bridging in Goat Calvarial Critical Size Defects Without Growth Factor Augmentation. Regenerative Engineering and Translational Medicine, 2020, 6, 189-200.	2.9	1
157	Rational Design and Fabrication of Biomimetic Hierarchical Scaffolds With Bone-Matchable Strength for Bone Regeneration. Frontiers in Materials, 2021, 7, .	2.4	1
158	Thermal processing of a degradable carboxylic acidâ€functionalized polycarbonate into scaffolds for tissue engineering. Polymer Engineering and Science, 2021, 61, 2012-2022.	3.1	1
159	Structure–property correlations in a combinatorial library of degradable biomaterials. Journal of Biomedical Materials Research Part B, 1998, 42, 66-75.	3.1	1
160	Evaluation of Thermal Properties and Physical Aging as Function of the Pendent Chain Length in Tyrosine-Derived Polycarbonates, a Class of New Biomaterials. Materials Research Society Symposia Proceedings, 1995, 394, 143.	0.1	0
161	Can we regrow a human arm? An overview and summary. Journal of Materials Science: Materials in Medicine, 2013, 24, 2623-2626.	3.6	0