
Joel Chappell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5188452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATION
1	Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models. Circulation Research, 2016, 119, 1313-1323.	2.0	317
2	Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nature Communications, 2018, 9, 4567.	5.8	219
3	Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1149-1159.	1.1	121
4	The CXCL12/CXCR4 Axis Plays a Critical Role in Coronary Artery Development. Developmental Cell, 2015, 33, 455-468.	3.1	108
5	Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell, 2021, 28, 1625-1640.e6.	5.2	108
6	Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury. Communications Biology, 2021, 4, 611.	2.0	32
7	Dynamic reversal of random X-Chromosome inactivation during iPSC reprogramming. Genome Research, 2019, 29, 1659-1672.	2.4	31
8	Integrated multi-omics reveal polycomb repressive complex 2 restricts human trophoblast induction. Nature Cell Biology, 2022, 24, 858-871.	4.6	30
9	Epigenetic Regulation of Vascular Smooth Muscle Cells by Histone H3 Lysine 9 Dimethylation Attenuates Target Gene-Induction by Inflammatory Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2289-2302.	1.1	27
10	Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
11	Recent Advances in Understanding the Reversal of Gene Silencing During X Chromosome Reactivation. Frontiers in Cell and Developmental Biology, 2019, 7, 169.	1.8	19
12	Tox4 modulates cell fate reprogramming. Journal of Cell Science, 2019, 132, .	1.2	12
13	Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cellular and Molecular Life Sciences, 2022, 79, 153.	2.4	12