
Maximiliano Tourmente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5188213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions. Cells, 2022, 11, 220.	1.8	17
2	Effect of Motility Factors D-Penicillamine, Hypotaurine and Epinephrine on the Performance of Spermatozoa from Five Hamster Species. Biology, 2022, 11, 526.	1.3	3
3	Transgenerational effects on development following microplastic exposure in <i>Drosophila melanogaster</i> . PeerJ, 2021, 9, e11369.	0.9	20
4	Sexual selection towards a protamine expression ratio optimum in two rodent groups?. Evolution; International Journal of Organic Evolution, 2021, 75, 2124-2131.	1.1	2
5	Complex interactions between sperm viability and female fertility. Scientific Reports, 2019, 9, 15366.	1.6	3
6	Faster and more efficient swimming: energy consumption of murine spermatozoa under sperm competitionâ€. Biology of Reproduction, 2019, 100, 420-428.	1.2	27
7	Is male reproductive senescence minimized in Mus species with high levels of sperm competition?. Biological Journal of the Linnean Society, 2018, 123, 463-470.	0.7	3
8	mtDNA polymorphism and metabolic inhibition affect sperm performance in conplastic mice. Reproduction, 2017, 154, 341-354.	1.1	17
9	Unraveling the Sperm Bauplan: Relationships Between Sperm Head Morphology and Sperm Function in Rodents. Biology of Reproduction, 2016, 95, 25-25.	1.2	26
10	Selective constraints on protamine 2 in primates and rodents. BMC Evolutionary Biology, 2016, 16, 21.	3.2	20
11	Is the hook of muroid rodent's sperm related to sperm train formation?. Journal of Evolutionary Biology, 2016, 29, 1168-1177.	0.8	20
12	A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152708.	1.2	15
13	Sexual Selection of Protamine 1 in Mammals. Molecular Biology and Evolution, 2016, 33, 174-184.	3.5	28
14	No evidence of tradeâ€offs in the evolution of sperm numbers and sperm size in mammals. Journal of Evolutionary Biology, 2015, 28, 1816-1827.	0.8	12
15	Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species. Journal of Biological Chemistry, 2015, 290, 20613-20626.	1.6	114
16	Performance of Rodent Spermatozoa Over Time Is Enhanced by Increased ATP Concentrations: The Role of Sperm Competition1. Biology of Reproduction, 2015, 93, 64.	1.2	35
17	Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals. PLoS ONE, 2015, 10, e0138185.	1.1	18
18	Postcopulatory Sexual Selection Results in Spermatozoa with More Uniform Head and Flagellum Sizes in Rodents. PLoS ONE, 2014, 9, e108148.	1.1	29

#	Article	IF	CITATIONS
19	Evolution of Protamine Genes and Changes in Sperm Head Phenotype in Rodents1. Biology of Reproduction, 2014, 90, 67.	1.2	41
20	Structural evolution of CatSper1 in rodents is influenced by sperm competition, with effects on sperm swimming velocity. BMC Evolutionary Biology, 2014, 14, 106.	3.2	10
21	POSTCOPULATORY SEXUAL SELECTION INCREASES ATP CONTENT IN RODENT SPERMATOZOA. Evolution; International Journal of Organic Evolution, 2013, 67, 1838-1846.	1.1	50
22	Metabolic Rate Limits the Effect of Sperm Competition on Mammalian Spermatogenesis. PLoS ONE, 2013, 8, e76510.	1.1	26
23	Sperm Parameters Associated with Reproductive Ecology in Two Snake Species. Herpetologica, 2011, 67, 58-70.	0.2	21
24	Sperm competition and the evolution of sperm design in mammals. BMC Evolutionary Biology, 2011, 11, 12.	3.2	164
25	Why mammalian lineages respond differently to sexual selection: metabolic rate constrains the evolution of sperm size. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3135-3141.	1.2	40
26	Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents. PLoS ONE, 2011, 6, e18173.	1.1	106
27	Mass-Specific Metabolic Rate and Sperm Competition Determine Sperm Size in Marsupial Mammals. PLoS ONE, 2011, 6, e21244.	1.1	36
28	Sperm competition differentially affects swimming velocity and size of spermatozoa from closely related muroid rodents: head first. Reproduction, 2011, 142, 819-830.	1.1	70
29	SPERM COMPETITION AND REPRODUCTIVE MODE INFLUENCE SPERM DIMENSIONS AND STRUCTURE AMONG SNAKES. Evolution; International Journal of Organic Evolution, 2009, 63, 2513-2524.	1.1	46
30	Sperm ultrastructure of Bothrops alternatus and Bothrops diporus (Viperidae, Serpentes), and its possible relation to the reproductive features of the species. Zoomorphology, 2008, 127, 241-248.	0.4	18
31	Sperm motility parameters to evaluate the seminal quality of Boa constrictor occidentalis, a threatened snake species. Research in Veterinary Science, 2007, 82, 93-98.	0.9	24
32	The ultrastructure of the spermatozoa of Boa constrictor occidentalis, with considerations on its mating system and sperm competition theories. Acta Zoologica, 2006, 87, 25-32.	0.6	21
33	Mass-specific metabolic rate influences sperm performance through energy production in mammals. Reproduction Abstracts, 0, , .	0.0	Ο