Shigeto Furukawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5188155/publications.pdf Version: 2024-02-01

SHICETO FURIKANA

#	Article	IF	CITATIONS
1	Expectations of the timing and intensity of a stimulus propagate to the auditory periphery through the medial olivocochlear reflex. Cerebral Cortex, 2022, 32, 5121-5131.	2.9	2
2	Temporal dynamics of auditory bistable perception correlated with fluctuation of baseline pupil size. Psychophysiology, 2022, , e14028.	2.4	1
3	Conversion of amplitude modulation to phase modulation in the human cochlea. Hearing Research, 2021, 408, 108274.	2.0	0
4	Auditory brainstem responses in adults with autism spectrum disorder. Clinical Neurophysiology Practice, 2021, 6, 179-184.	1.4	5
5	Relationship of postsaccadic oscillation with the state of the pupil inside the iris and with cognitive processing. Journal of Neurophysiology, 2020, 123, 484-495.	1.8	0
6	Factors Influencing Saccadic Reaction Time: Effect of Task Modality, Stimulus Saliency, Spatial Congruency of Stimuli, and Pupil Size. Frontiers in Human Neuroscience, 2020, 14, 571893.	2.0	3
7	Proximal Binaural Sound Can Induce Subjective Frisson. Frontiers in Psychology, 2020, 11, 316.	2.1	6
8	Chimeric sounds with shuffled ``texture'' and ``content'' synthesized by a model of the auditory system. Acoustical Science and Technology, 2020, 41, 337-340.	0.5	0
9	Examination of efficient coding model for auditory nerves during infant development. Acoustical Science and Technology, 2020, 41, 351-354.	0.5	0
10	Relationship between characteristics of medial olivocochlear reflex and speech-in-noise-reception performance. Acoustical Science and Technology, 2020, 41, 404-407.	0.5	3
11	Data-driven approaches for unveiling the neurophysiological functions of the auditory system. Acoustical Science and Technology, 2020, 41, 63-66.	0.5	1
12	Cascaded Tuning to Amplitude Modulation for Natural Sound Recognition. Journal of Neuroscience, 2019, 39, 5517-5533.	3.6	25
13	Rapid Ocular Responses Are Modulated by Bottom-up-Driven Auditory Salience. Journal of Neuroscience, 2019, 39, 7703-7714.	3.6	33
14	Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences. Nature Communications, 2019, 10, 4030.	12.8	60
15	Relationship between cochlear mechanics and speech-in-noise reception performance. Journal of the Acoustical Society of America, 2019, 146, EL265-EL271.	1.1	0
16	Microsaccades and pupillary responses represent the focus of auditory attention. Journal of Vision, 2019, 19, 273b.	0.3	0
17	Pupillometry and Microsaccade Responses Reveal Unconscious Processing of Face Information Under Interoc-ular Suppression. Journal of Vision, 2019, 19, 61b.	0.3	0
18	Light-synchronized tapping task as an objective method for estimating auditory detection threshold. Acoustical Science and Technology, 2018, 39, 30-36.	0.5	0

Shigeto Furukawa

#	Article	IF	CITATIONS
19	Do Speech Contexts Induce Constancy of Material Perception Based on Impact Sound Under Reverberation?. Acta Acustica United With Acustica, 2018, 104, 796-799.	0.8	1
20	A Preceding Sound Expedites Medial Olivocochlear Reflex. Acta Acustica United With Acustica, 2018, 104, 804-808.	0.8	3
21	Pupillary dilation response reflects surprising moments in music. Journal of Eye Movement Research, 2018, 11, .	0.8	7
22	Comparison of perceptual properties of auditory streaming between spectral and amplitude modulation domains. Hearing Research, 2017, 350, 244-250.	2.0	4
23	Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography. NeuroImage, 2017, 159, 185-194.	4.2	5
24	Context-Dependent Effect of Reverberation on Material Perception from Impact Sound. Scientific Reports, 2017, 7, 16455.	3.3	6
25	Auditory Mismatch Negativity in Response to Changes of Counter-Balanced Interaural Time and Level Differences. Frontiers in Neuroscience, 2017, 11, 387.	2.8	4
26	Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention. Frontiers in Neuroscience, 2016, 10, 43.	2.8	78
27	A Role of Medial Olivocochlear Reflex as a Protection Mechanism from Noise-Induced Hearing Loss Revealed in Short-Practicing Violinists. PLoS ONE, 2016, 11, e0146751.	2.5	19
28	Subcortical correlates of auditory perceptual organization in humans. Hearing Research, 2016, 339, 104-111.	2.0	10
29	The effect of distraction on change detection in crowded acoustic scenes. Hearing Research, 2016, 341, 179-189.	2.0	11
30	Relation Between Cochlear Mechanics and Performance of Temporal Fine Structure-Based Tasks. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 541-557.	1.8	8
31	Correspondences among pupillary dilation response, subjective salience of sounds, and loudness. Psychonomic Bulletin and Review, 2016, 23, 412-425.	2.8	67
32	Contributions of Coding Efficiency of Temporal-Structure and Level Information to Lateralization Performance in Young and Early-Elderly Listeners. Advances in Experimental Medicine and Biology, 2016, 894, 19-28.	1.6	4
33	Processing of temporal information in the auditory system. Audiology Japan, 2016, 59, 615-622.	0.1	1
34	Effects of Frequency Separation and Diotic/Dichotic Presentations on the Alternation Frequency Limits in Audition Derived from a Temporal Phase Discrimination Task. Perception, 2015, 44, 198-214.	1.2	1
35	Factors that account for inter-individual variability of lateralization performance revealed by correlations of performance among multiple psychoacoustical tasks. Frontiers in Neuroscience, 2014, 8, 27.	2.8	10
36	Independent or integrated processing of interaural time and level differences in human auditory cortex?. Hearing Research, 2014, 312, 121-127.	2.0	12

Shigeto Furukawa

#	Article	IF	CITATIONS
37	Interindividual Variation of Sensitivity to Frequency Modulation: Its Relation with Click-Evoked and Distortion Product Otoacoustic Emissions. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 175-186.	1.8	5
38	How Independent Are the Pitch and Interaural-Time-Difference Mechanisms That Rely on Temporal Fine Structure Information?. Advances in Experimental Medicine and Biology, 2013, 787, 91-99.	1.6	4
39	Insensitivity to the coherence of interaural-time-difference modulation across frequency channels. Acoustical Science and Technology, 2013, 34, 397-403.	0.5	0
40	Comparisons of temporal frequency limits for cross-attribute binding tasks in vision and audition. Journal of Vision, 2013, 13, 885-885.	0.3	0
41	Detection of simultaneous modulation of interaural time and level differences: Effects of modulation rate and relative phase (L). Journal of the Acoustical Society of America, 2012, 132, 1-4.	1.1	7
42	Photosensitive-polyimide based method for fabricating various neural electrode architectures. Frontiers in Neuroengineering, 2012, 5, 11.	4.8	20
43	Effects of irradiation of near-infrared laser on waveform and amplitude of auditory evoked potentials in the guinea pig. Neuroscience Research, 2011, 71, e354.	1.9	0
44	Contribution of acoustical characteristics to auditory perception of silent object. , 2011, , .		3
45	Detection of combined changes in interaural time and intensity differences: Segregated mechanisms in cue type and in operating frequency range?. Journal of the Acoustical Society of America, 2008, 123, 1602-1617.	1.1	10
46	A photosensitive polyimide based method for an easy fabrication of multichannel neural electrodes. , 2008, 2008, 5802-5.		1
47	Sensitivity of the auditory middle latency response of the guinea pig to interaural level and time differences. Hearing Research, 2006, 212, 48-57.	2.0	4
48	Dependency of the Interaural Phase Difference Sensitivities of Inferior Collicular Neurons on a Preceding Tone and Its Implications in Neural Population Coding. Journal of Neurophysiology, 2005, 93, 3313-3326.	1.8	19
49	Acoustical cues for sound localization by the Mongolian gerbil,Meriones unguiculatus. Journal of the Acoustical Society of America, 2005, 118, 872-886.	1.1	72
50	Reducing individual differences in the external-ear transfer functions of the Mongolian gerbil. Journal of the Acoustical Society of America, 2005, 118, 2392-2404.	1.1	8
51	The responses of neurons in the gerbil inferior colliculus to virtual acoustic space stimuli. Acoustical Science and Technology, 2005, 26, 82-84.	0.5	0
52	Head-related transfer functions of the Mongolian gerbil in the median plane. Acoustical Science and Technology, 2003, 24, 330-332.	0.5	2
53	Responses of neurons in the inferior colliculus to a dynamic-level stimulus that simulates a sound source with varying distance. Acoustical Science and Technology, 2003, 24, 318-321.	0.5	0
54	Cortical Representation of Auditory Space: Information-Bearing Features of Spike Patterns. Journal of Neurophysiology, 2002, 87, 1749-1762.	1.8	163

SHIGETO FURUKAWA

#	Article	IF	CITATIONS
55	Location Signaling by Cortical Neurons. Springer Handbook of Auditory Research, 2002, , 319-357.	0.7	6
56	Temporal characteristics of neural sensitivities to the interaural phase difference in the inferior colliculus Acoustical Science and Technology, 2002, 23, 286-288.	0.5	0
57	Sensitivity of Auditory Cortical Neurons to Locations of Signals and Competing Noise Sources. Journal of Neurophysiology, 2001, 86, 226-240.	1.8	27
58	Cortical codes for sound localization. Acoustical Science and Technology, 2001, 22, 69-76.	0.5	0
59	Auditory Cortical Images of Tones and Noise Bands. JARO - Journal of the Association for Research in Otolaryngology, 2000, 1, 183-194.	1.8	27
60	Coding of Sound-Source Location by Ensembles of Cortical Neurons. Journal of Neuroscience, 2000, 20, 1216-1228.	3.6	139
61	Cortical Mechanisms for Auditory Spatial Illusions. Acta Oto-Laryngologica, 2000, 120, 263-266.	0.9	4
62	Auditory cortical responses in the cat to sounds that produce spatial illusions. Nature, 1999, 399, 688-691.	27.8	30
63	Sensitivity to Sound-Source Elevation in Nontonotopic Auditory Cortex. Journal of Neurophysiology, 1998, 80, 882-894.	1.8	46
64	Dependence of frequency modulation detection on frequency modulation coherence across carriers: Effects of modulation rate, harmonicity, and roving of the carrier frequencies. Journal of the Acoustical Society of America, 1997, 101, 1632-1643.	1.1	11
65	Effect of the relative phase of amplitude modulation on the detection of modulation on two carriers. Journal of the Acoustical Society of America, 1997, 102, 3657-3664.	1.1	5
66	Across hannel processes in frequency modulation detection. Journal of the Acoustical Society of America, 1996, 100, 2299-2311.	1.1	12