
Giorgio Mancinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5188129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	13.7	635
2	Mesocosm Experiments as a Tool for Ecological Climate-Change Research. Advances in Ecological Research, 2013, 48, 71-181.	1.4	237
3	A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science, 2013, 24, 942-948.	1.1	209
4	Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 2009, 15, 2730-2738.	4.2	171
5	<scp>RI</scp> n <scp>S</scp> p: an <scp>r</scp> package for the analysis of individual specialization in resource use. Methods in Ecology and Evolution, 2013, 4, 1018-1023.	2.2	155
6	Monitoring soil bacteria with community-level physiological profiles using Biologâ,,¢ ECO-plates in the Netherlands and Europe. Applied Soil Ecology, 2016, 97, 23-35.	2.1	131
7	Three allometric relations of population density to body mass: theoretical integration and empirical tests in 149 food webs. Ecology Letters, 2008, 11, 1216-1228.	3.0	106
8	Bacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslands. Ecology Letters, 2004, 8, 80-90.	3.0	103
9	Mapping earthworm communities in Europe. Applied Soil Ecology, 2016, 97, 98-111.	2.1	99
10	Marine litter in stomach content of small pelagic fishes from the Adriatic Sea: sardines (Sardina) Tj ETQq0 0 0 2019, 26, 2771-2781.	rgBT /Overlc 2.7	ock 10 Tf 50 3 99
11	The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution, impact and prospective invasion management strategies. Marine Pollution Bulletin, 2017, 119, 5-11.	2.3	91
12	Towards an Integration of Biodiversity–Ecosystem Functioning and Food Web Theory to Evaluate Relationships between Multiple Ecosystem Services. Advances in Ecological Research, 2015, , 161-199.	1.4	87
13	Connecting the Green and Brown Worlds. Advances in Ecological Research, 2013, 49, 69-175.	1.4	84
14	A Belowground Perspective on Dutch Agroecosystems: How Soil Organisms Interact to Support Ecosystem Services. Advances in Ecological Research, 2011, , 277-357.	1.4	83
15	Scaling of offspring number and mass to plant and animal size: model and meta-analysis. Oecologia, 2008, 155, 705-716.	0.9	69
16	Numerical abundance and biodiversity of below-ground taxocenes along a pH gradient across the Netherlands. Journal of Biogeography, 2005, 32, 1775-1790.	1.4	61
17	Chapter 1 Allometry of Body Size and Abundance in 166 Food Webs. Advances in Ecological Research, 2009, , 1-44.	1.4	60
18	Cross-validation of δ15N and FishBase estimates of fish trophic position in a Mediterranean lagoon: The importance of the isotopic baseline. Estuarine, Coastal and Shelf Science, 2013, 135, 77-85.	0.9	59

#	Article	IF	CITATIONS
19	Driving forces from soil invertebrates to ecosystem functioning: the allometric perspective. Die Naturwissenschaften, 2006, 93, 467-479.	0.6	58
20	On the Atlantic blue crab (Callinectes sapidus Rathbun 1896) in southern European coastal waters: Time to turn a threat into a resource?. Fisheries Research, 2017, 194, 1-8.	0.9	57
21	Distributional (In)Congruence of Biodiversity–Ecosystem Functioning. Advances in Ecological Research, 2012, 46, 1-88.	1.4	52
22	Networking Agroecology. Advances in Ecological Research, 2013, , 1-67.	1.4	50
23	Occurrence of the Atlantic blue crab Callinectes sapidus Rathbun, 1896 in two Mediterranean coastal habitats: Temporary visitor or permanent resident?. Estuarine, Coastal and Shelf Science, 2013, 135, 46-56.	0.9	46
24	Assessing anthropogenic pressures on coastal marine ecosystems using stable CNS isotopes: State of the art, knowledge gaps, and community-scale perspectives. Estuarine, Coastal and Shelf Science, 2015, 156, 195-204.	0.9	44
25	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	1.4	43
26	Occurrence of pollen and spores in relation to presentâ€day vegetation in a Dutch heathland area. Journal of Vegetation Science, 1999, 10, 87-100.	1.1	42
27	Cascading effects of predatory fish exclusion on the detritus-based food web of a lake littoral zone (Lake Vico, central Italy). Oecologia, 2002, 133, 402-411.	0.9	42
28	The trophic position of the Atlantic blue crab Callinectes sapidus Rathbun 1896 in the food web of Parila Lagoon (South Eastern Adriatic, Croatia): a first assessment using stable isotopes Mediterranean Marine Science, 2016, 17, 634.	0.6	39
29	Aboveground Herbivory Shapes the Biomass Distribution and Flux of Soil Invertebrates. PLoS ONE, 2008, 3, e3573.	1.1	37
30	Nematode traits and environmental constraints in 200 soil systems: scaling within the 60–6000 μm body size range. Ecology, 2011, 92, 2004-2004.	1.5	37
31	Evaluating the impact of pollution on plant-Lepidoptera relationships. Environmetrics, 2005, 16, 357-373.	0.6	36
32	Short-term patch dynamics of macroinvertebrate colonization on decaying reed detritus in a Mediterranean lagoon (Lake Alimini Grande,Apulia, SE Italy). Marine Biology, 2005, 148, 271-283.	0.7	36
33	A global occurrence database of the Atlantic blue crab Callinectes sapidus. Scientific Data, 2021, 8, 111.	2.4	36
34	Can Transgenic Maize Affect Soil Microbial Communities?. PLoS Computational Biology, 2006, 2, e128.	1.5	35
35	Seasonal abundance and trophic position of the Atlantic blue crab Callinectes sapidus Rathbun 1896 in a Mediterranean coastal habitat. Rendiconti Lincei, 2014, 25, 201-208.	1.0	35
36	The practicalities and pitfalls of establishing a policyâ€relevant and costâ€effective soil biological monitoring scheme. Integrated Environmental Assessment and Management, 2013, 9, 276-284.	1.6	34

#	Article	IF	CITATIONS
37	Indirect, size-dependent effects of crustacean mesograzers on the Rhodophyta Gracilaria verrucosa (Hudson) Papenfuss: evidence from a short-term study in the Lesina Lagoon (Italy). Marine Biology, 2001, 138, 1163-1173.	0.7	33
38	Title is missing!. Hydrobiologia, 1998, 367, 211-222.	1.0	32
39	On the trophic ecology of Gammaridea (Crustacea: Amphipoda) in coastal waters: A European-scale analysis of stable isotopes data. Estuarine, Coastal and Shelf Science, 2012, 114, 130-139.	0.9	30
40	Trophic flexibility of the Atlantic blue crab Callinectes sapidus in invaded coastal systems of the Apulia region (SE Italy): A stable isotope analysis. Estuarine, Coastal and Shelf Science, 2017, 198, 421-431.	0.9	30
41	How allometric scaling relates to soil abiotics. Oikos, 2011, 120, 529-536.	1.2	29
42	Fungal functional diversity inferred along Ellenberg's abiotic gradients: Palynological evidence from different soil microbiota. Grana, 2003, 42, 55-64.	0.4	28
43	Comparative analysis of the proximate and elemental composition of the blue crab Callinectes sapidus, the warty crab Eriphia verrucosa, and the edible crab Cancer pagurus. Heliyon, 2016, 2, e00075.	1.4	28
44	1 H NMR metabolomic profiling of the blue crab (Callinectes sapidus) from the Adriatic Sea (SE Italy): A comparison with warty crab (Eriphia verrucosa), and edible crab (Cancer pagurus). Food Chemistry, 2016, 196, 601-609.	4.2	28
45	Top-Down Control of Reed Detritus Processing in a Lake Littoral Zone: Experimental Evidence of a Seasonal Compensation between Fish and Invertebrate Predation. International Review of Hydrobiology, 2007, 92, 117-134.	0.5	27
46	Allometry, biocomplexity, and web topology of hundred agro-environments in The Netherlands. Ecological Complexity, 2006, 3, 219-230.	1.4	26
47	Intraspecific, size-dependent variation in the movement behaviour of a brackish-water isopod: a resource-free laboratory experiment. Marine and Freshwater Behaviour and Physiology, 2010, 43, 321-337.	0.4	26
48	The effects of decapod crustacean macroconsumers on leaf detritus processing and colonization by invertebrates in stream habitats: A metaâ€analysis. International Review of Hydrobiology, 2013, 98, 206-216.	0.5	26
49	Baseline assessment of heavy metals content and trophic position of the invasive blue swimming crab Portunus segnis (Forskål, 1775) in the Gulf of Gabès (Tunisia). Marine Pollution Bulletin, 2018, 136, 454-463.	2.3	26
50	Soil resource supply influences faunal size–specific distributions in natural food webs. Die Naturwissenschaften, 2009, 96, 813-826.	0.6	24
51	Empirical maximum lifespan of earthworms is twice that of mice. Age, 2007, 29, 229-231.	3.0	23
52	"New Mediterranean Biodiversity Records―(March 2017). Mediterranean Marine Science, 2017, 18, 179.	0.6	23
53	Choice of Resolution by Functional Trait or Taxonomy Affects Allometric Scaling in Soil Food Webs. American Naturalist, 2015, 185, 142-149.	1.0	22
54	What shapes the trophic niche of European plethodontid salamanders?. PLoS ONE, 2018, 13, e0205672.	1.1	22

#	Article	IF	CITATIONS
55	Interspecific and interpopulation variation in individual diet specialization: Do environmental factors have a role?. Ecology, 2020, 101, e03088.	1.5	21
56	Effect of Drought Frequency and Other Reach Characteristics on Invertebrate Communities and Litter Breakdown in the Intermittent Mediterranean River Pula (Sardinia, Italy). International Review of Hydrobiology, 2007, 92, 156-172.	0.5	20
57	Effects of invertebrate patch use behaviour and detritus quality on reed leaf decomposition in aquatic systems: A modelling approach. Ecological Modelling, 2007, 205, 492-506.	1.2	20
58	Variability of Lekanesphaera monodi metabolic rates with habitat trophic status. Acta Oecologica, 2012, 41, 58-64.	0.5	20
59	Using online questionnaires to assess marine bio-invasions: A demonstration with recreational fishers and the Atlantic blue crab Callinectes sapidus (Rathbun, 1986) along three Mediterranean countries. Marine Pollution Bulletin, 2020, 156, 111209.	2.3	20
60	The Influence of Allochthonous Leaf Detritus on the Occurrence of Crustacean Detritivores in the Soft-bottom Macrobenthos of the Po River Delta Area (northwestern Adriatic Sea). Estuarine, Coastal and Shelf Science, 2002, 54, 849-861.	0.9	19
61	To bite, or not to bite? A quantitative comparison of foraging strategies among three brackish crustaceans feeding on leaf litters. Estuarine, Coastal and Shelf Science, 2012, 110, 125-133.	0.9	19
62	Colonization of ephemeral detrital patches by vagile macroinvertebrates in a brackish lake: a body size-related process?. Oecologia, 2007, 151, 292-302.	0.9	18
63	Soil fertility controls the sizeâ€specific distribution of eukaryotes. Annals of the New York Academy of Sciences, 2010, 1195, E74-81.	1.8	18
64	Beyond the mean: A comparison of trace- and macroelement correlation profiles of two lacustrine populations of the crayfish Procambarus clarkii. Science of the Total Environment, 2018, 624, 1455-1466.	3.9	18
65	Severe, rapid and widespread impacts of an Atlantic blue crab invasion. Marine Pollution Bulletin, 2022, 176, 113479.	2.3	18
66	How can habitat size influence leaf litter decomposition in five mid-Appalachian springs (USA)? The importance of the structure of the detritivorous guild. Hydrobiologia, 2010, 654, 227-236.	1.0	17
67	Body mass-related shift in movement behaviour in the isopod <i>Lekanesphaera hookeri</i> (Isopoda,) Tj ETQq1 🤅	1 0.78431 0.8	4 rgBT /Overl 17
68	Detrital Dynamics and Cascading Effects on Supporting Ecosystem Services. Advances in Ecological Research, 2015, , 97-160.	1.4	17
69	Identification and ranking of environmental threats with ecosystem vulnerability distributions. Scientific Reports, 2017, 7, 9298.	1.6	17
70	Population Dynamics and Reproduction of Mediterranean Green CrabCarcinus aestuariiin Parila Lagoon (Neretva Estuary, Adriatic Sea, Croatia) as Fishery Management Tools. Marine and Coastal Fisheries, 2017, 9, 260-270.	0.6	17
71	On the Potential Contribution of Microfungi to the Decomposition of Reed Leaf Detritus in a Coastal Lagoon: A Laboratory and Field Experiment. International Review of Hydrobiology, 2009, 94, 419-435.	0.5	16
72	Size at the onset of maturity (SOM) revealed in length–weight relationships of brackish amphipods and isopods: An information theory approach. Estuarine, Coastal and Shelf Science, 2014, 136, 119-128.	0.9	16

#	Article	IF	CITATIONS
73	Influence of sampling effort on ecological descriptors and indicators in perturbed and unperturbed conditions: A study case using benthic macroinvertebrates in Mediterranean transitional waters. Ecological Indicators, 2014, 37, 27-39.	2.6	16
74	Chapter 2 Human and Environmental Factors Influence Soil Faunal Abundance–Mass Allometry and Structure. Advances in Ecological Research, 2009, , 45-85.	1.4	15
75	Spatial variability of the decomposition rate of Schoenoplectus tatora in a polluted area of Lake Titicaca. Journal of Tropical Ecology, 2004, 20, 325-335.	0.5	14
76	Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes. BMC Ecology, 2017, 17, 36.	3.0	14
77	Carbon budget and national gross domestic product in the framework of the Paris Climate Agreement. Ecological Indicators, 2021, 130, 108066.	2.6	14
78	Relative abundance and activity of melanized hyphae in different soil ecosystems. Soil Biology and Biochemistry, 2009, 41, 417-419.	4.2	13
79	Same Diet, Different Strategies: Variability of Individual Feeding Habits across Three Populations of Ambrosi's Cave Salamander (Hydromantes ambrosii). Diversity, 2020, 12, 180.	0.7	13
80	Ecohydrological perspective of phytogenic organic and inorganic components in Greek lignites: a quantitative reinterpretation. Earth and Planetary Science Letters, 2000, 179, 167-181.	1.8	12
81	Delayed logistic and Rosenzweig–MacArthur models with allometric parameter setting estimate population cycles at lower trophic levels well. Ecological Complexity, 2012, 9, 43-54.	1.4	12
82	Investigating landscape phase transitions in Mediterranean rangelands by recurrence analysis. Landscape Ecology, 2018, 33, 1617-1631.	1.9	12
83	Riding the wave: Response of bacterial and fungal microbiota associated with the spread of the fairy ring fungus Calocybe gambosa. Applied Soil Ecology, 2021, 163, 103963.	2.1	12
84	How soil granulometry, temperature, and water predict genetic differentiation in Namibian spiders () Tj ETQq0	0 0 rgBT /C	Overlock 10 Tf
85	Testing for topâ€down cascading effects in a biomassâ€driven ecological network of soil invertebrates. Ecology and Evolution, 2020, 10, 7062-7072.	0.8	10
86	Soil invertebrates, chemistry, weather, human management, and edaphic food webs at 135 sites in The Netherlands: SIZEWEB. Ecology, 2014, 95, 578-578.	1.5	9
87	A Comparison of Traditional and Locally Novel Fishing Gear for the Exploitation of the Invasive Atlantic Blue Crab in the Eastern Adriatic Sea. Journal of Marine Science and Engineering, 2021, 9, 1019.	1.2	9
88	Combined effects of acidification and competition on the feeding preference of a freshwater macroinvertebrate, Asellus aquaticus (Crustacea:Isopoda): a laboratory experiment. Marine and Freshwater Research, 2005, 56, 997.	0.7	8
89	Detritus Processing in Tri-Trophic Food Chains: a Modelling Approach. International Review of Hydrobiology, 2007, 92, 103-116.	0.5	8
90	Traitâ€mediated diversification in nematode predator–prey systems. Ecology and Evolution, 2011, 1, 386-391.	0.8	8

#	Article	IF	CITATIONS
91	Contrasting influence of soil nutrients and microbial community on differently sized basal consumers. Die Naturwissenschaften, 2013, 100, 611-620.	0.6	8
92	Spatial variation in biodiversity patterns of neuston in the Western Mediterranean and Southern Adriatic Seas. Journal of Sea Research, 2017, 129, 12-21.	0.6	8
93	Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: The Role of Bioclimatic Factors. Water (Switzerland), 2019, 11, 2384.	1.2	8
94	Ecology and eScience. Ecological Processes, 2012, 1, .	1.6	7
95	Ontogenetic shift in the trophic role of the invasive killer shrimp Dikerogammarus villosus: a stable isotope study. Biological Invasions, 2021, 23, 1803-1817.	1.2	7
96	Parasites affect hemocyte functionality in the hemolymph of the invasive Atlantic blue crab Callinectes sapidus from a coastal habitat of the Salento Peninsula (SE Italy). Mediterranean Marine Science, 2018, 19, 193.	0.6	7
97	Occurrence of the protozoan parasites Toxoplasma gondii and Cyclospora cayetanensis in the invasive Atlantic blue crab Callinectes sapidus from the Lesina Lagoon (SE Italy). Marine Pollution Bulletin, 2022, 176, 113428.	2.3	7
98	Beyond virology: environmental constraints of the first wave of COVID-19 cases in Italy. Environmental Science and Pollution Research, 2021, 28, 31996-32004.	2.7	6
99	First records of the crayfish Procambarus clarkii (Girard, 1852) (Decapoda, Cambaridae) in Lake Varano and in the Salento Peninsula (Puglia region, SE Italy), with review of the current status in southern Italy. BioInvasions Records, 2017, 6, 153-158.	0.4	6
100	Euryhaline Aliens Invading Italian Inland Waters: The Case of the Atlantic Blue Crab Callinectes sapidus Rathbun, 1896. Applied Sciences (Switzerland), 2022, 12, 4666.	1.3	6
101	Body size-related constraints on the movement behaviour of the arctic notostracan Lepidurus arcticus (Pallas, 1973) under laboratory conditions. Rendiconti Lincei, 2016, 27, 207-215.	1.0	5
102	On the importance of body size in the colonisation of ephemeral resource patches by vagile consumers. Rendiconti Lincei, 2009, 20, 139-151.	1.0	4
103	World Wide Food Webs: Power to Feed Ecologists. Ambio, 2011, 40, 335-337.	2.8	4
104	Predicting ergosterol in leaf litter by near-infrared spectroradiometry: A preliminary assessment. European Journal of Soil Biology, 2014, 63, 49-54.	1.4	4
105	Inter- and intra-specific variation in movement behaviour of benthic macroinvertebrates from a transitional habitat: a laboratory experiment. Rendiconti Lincei, 2016, 27, 281-290.	1.0	4
106	Ecological validation of soil food-web robustness for managed grasslands. Ecological Indicators, 2022, 141, 109079.	2.6	4
107	On the Influence of Temporal Resolution in Mesh Bag Decomposition Studies. International Review of Hydrobiology, 2007, 92, 135-145.	0.5	3
108	Contextualizing macroecological laws: A big data analysis on electrofishing and allometric scalings in Ohio, USA. Ecological Complexity, 2017, 31, 64-71.	1.4	3

#	Article	IF	CITATIONS
109	Ecological Networks in Managed Ecosystems: Connecting Structure to Services. , 0, , 214-227.		3
110	An allometric tragedy of the commons: Response to the article "Evaluation of models capacity to predict size spectra parameters in ecosystems under stress― Ecological Indicators, 2018, 84, 161-164.	2.6	3
111	Stable isotope analysis reveals trophic segregation between the invasive zebra mussel Dreissena polymorpha and the native duck mussel Anodonta anatina in Lake Trasimeno (Italy). Hydrobiologia, 2022, 849, 2091-2108.	1.0	3
112	An individual-based dataset of carbon and nitrogen isotopic data of Callinectes sapidus in invaded Mediterranean waters. Biodiversity Data Journal, 2022, 10, e77516.	0.4	2
113	Role of microorganisms and macrofauna in benthic phosphorus dynamics in the po river–Adriatic Sea frontal system: An experimental approach. Chemistry and Ecology, 2002, 18, 161-176.	0.6	0
114	An allometric tragedy of the commons: The happy end. Ecological Indicators, 2019, 96, 753.	2.6	0
115	Interâ€Specific and Interâ€Population Variation in Individual Diet Specialization: Do Environmental Factors Have a Role?. Bulletin of the Ecological Society of America, 2020, 101, e01728.	0.2	0