
Michel Pons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5188069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming. Chemical Engineering Science, 2007, 62, 1636-1649.	1.9	133
2	Thermodynamic Calculations as the Basis for CVD Production of Silicide Coatings. MRS Bulletin, 1999, 24, 27-31.	1.7	119
3	Improvement of the wear resistance of 316L stainless steel by laser surface alloying. Surface and Coatings Technology, 1996, 80, 207-210.	2.2	79
4	Thermodynamic Heat Transfer and Mass Transport Modeling of the Sublimation Growth of Silicon Carbide Crystals. Journal of the Electrochemical Society, 1996, 143, 3727-3735.	1.3	67
5	Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth. Journal of Crystal Growth, 2010, 312, 155-163.	0.7	59
6	Modeling and simulation of SiC CVD in the horizontal hot-wall reactor concept. Journal of Crystal Growth, 2004, 267, 436-451.	0.7	52
7	State of the art in the modelling of SiC sublimation growth. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 61-62, 18-28.	1.7	50
8	Growth and Doping Modeling of SiC-CVD in a Horizontal Hot-Wall Reactor. Chemical Vapor Deposition, 2006, 12, 516-522.	1.4	50
9	Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy. Journal of Alloys and Compounds, 2012, 526, 103-109.	2.8	42
10	High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubes. Surface and Coatings Technology, 2018, 349, 1048-1057.	2.2	42
11	Control of the Supersaturation in the CFâ^'PVT Process for the Growth of Silicon Carbide Crystals: Research and Applications. Crystal Growth and Design, 2005, 5, 1539-1544.	1.4	40
12	Prospects for 3C-SiC bulk crystal growth. Journal of Crystal Growth, 2008, 310, 976-981.	0.7	38
13	Oxidation of ion-implanted metals. Materials Science and Engineering, 1985, 69, 329-340.	0.1	37
14	Application of equilibrium thermodynamics to the development of diffusion barriers for copper metallization (invited). Microelectronic Engineering, 2000, 50, 357-368.	1.1	35
15	SiC single crystal growth by a modified physical vapor transport technique. Journal of Crystal Growth, 2005, 275, e555-e560.	0.7	35
16	Carbide-reinforced coatings on AISI 316 L stainless steel by laser surface alloying. Surface and Coatings Technology, 1995, 76-77, 450-455.	2.2	33
17	Hardening of 316L stainless steel by laser surface alloying. Journal of Materials Science, 1995, 30, 3652-3657.	1.7	32
18	Crystallization during Bending of a Pd-Based Metallic Glass Detected by X-Ray Microscopy. Physical Review Letters, 2012, 109, 085501.	2.9	31

#	Article	IF	CITATIONS
19	Epitaxial and polycrystalline growth of AlN by high temperature CVD: Experimental results and simulation. Surface and Coatings Technology, 2010, 205, 1294-1301.	2.2	29
20	High-Temperature Nucleation of Cubic Silicon Carbide on (0001) Hexagonal-SiC Nominal Surfaces. Crystal Growth and Design, 2006, 6, 2788-2794.	1.4	27
21	Influence of the V/III ratio in the gas phase on thin epitaxial AIN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Thin Solid Films, 2014, 573, 140-147.	0.8	27
22	Continuous Feed Physical Vapor Transport. Journal of the Electrochemical Society, 2003, 150, G653.	1.3	26
23	Status of SiC bulk growth processes. Journal Physics D: Applied Physics, 2007, 40, 6150-6158.	1.3	26
24	Thermodynamic and experimental investigations on the growth of thick aluminum nitride layers by high temperature CVD. Journal of Crystal Growth, 2009, 311, 3371-3379.	0.7	26
25	Chromium carbide growth at low temperature by a highly efficient DLI-MOCVD process in effluent recycling mode. Surface and Coatings Technology, 2017, 332, 96-104.	2.2	26
26	Deposition of MgO thin film by liquid pulsed injection MOCVD. Surface and Coatings Technology, 2005, 200, 1424-1429.	2.2	25
27	Ni- and Cu-free Ti-based metallic glasses with potential biomedical application. Intermetallics, 2015, 63, 86-96.	1.8	25
28	Laser surface melting of mild steel with submicronic titanium carbide powders. Journal of Materials Science, 1994, 29, 5121-5126.	1.7	24
29	Large Area DPB Free (111) β-SiC Thick Layer Grown on (0001) α-SiC Nominal Surfaces by the CF-PVT Method. Materials Science Forum, 2005, 483-485, 225-228.	0.3	24
30	High temperature chemical vapor deposition of aluminum nitride, growth and evaluation. Surface and Coatings Technology, 2013, 230, 111-118.	2.2	24
31	lon implantation into metals to prevent high temperature oxidation. Nuclear Instruments & Methods in Physics Research, 1983, 209-210, 1011-1017.	0.9	23
32	Bulk growth of SiC – review on advances of SiC vapor growth for improved doping and systematic study on dislocation evolution. Physica Status Solidi (B): Basic Research, 2008, 245, 1239-1256.	0.7	23
33	Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition. Surface and Coatings Technology, 2018, 347, 181-190.	2.2	23
34	Chemical vapor deposition of titanium nitride thin films: kinetics and experiments. CrystEngComm, 2019, 21, 3974-3981.	1.3	22
35	Different macroscopic approaches to the modelling of the sublimation growth of SiC single crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 46, 308-312.	1.7	20
36	Study of plasma mechanisms of hybrid a-SiOC:H low-k film deposition from decamethylcyclopentasiloxane and cyclohexene oxide. Microelectronic Engineering, 2005, 82, 416-421.	1.1	20

#	Article	IF	CITATIONS
37	Modeling of a Solid Oxide Fuel Cell Fueled by Methane: Analysis of Carbon Deposition. Journal of Fuel Cell Science and Technology, 2007, 4, 425-434.	0.8	20
38	Laser-induced microstructural modifications in a vacuum plasma sprayed NiCoCrAlYTa coating. Surface and Coatings Technology, 1987, 32, 85-95.	2.2	18
39	Investigation on AlN epitaxial growth and related etching phenomenon at high temperature using high temperature chemical vapor deposition process. Journal of Crystal Growth, 2011, 335, 17-24.	0.7	18
40	Chromium Carbide Growth by Direct Liquid Injection Chemical Vapor Deposition in Long and Narrow Tubes, Experiments, Modeling and Simulation. Coatings, 2018, 8, 220.	1.2	18
41	The high temperature oxidation of aluminium-implanted iron. Corrosion Science, 1982, 22, 239-249.	3.0	17
42	Oxidation of ion-implanted titanium in the 750–950 °C temperature range. Journal of the Less Common Metals, 1985, 109, 45-56.	0.9	17
43	Laser surface alloying of Ti-6Al-4V with silicon for improved hardness and high-temperature oxidation resistance. Materials Letters, 1992, 13, 204-211.	1.3	16
44	Simulation of SiC deposition from SiH4/C3H8/Ar/H2 mixtures in a cold-wall CVD reactor. Surface and Coatings Technology, 2004, 177-178, 382-388.	2.2	16
45	A comparison between ion implantation and laser alloying of pure iron for oxidation resistance improvement. Journal of Materials Science, 1986, 21, 2697-2704.	1.7	15
46	SiC Single Crystal Growth by Sublimation: Experimental and Numerical Results. Materials Science Forum, 2001, 353-356, 7-10.	0.3	15
47	Chlorinated silicon carbide CVD revisited for polycrystalline bulk growth. Surface and Coatings Technology, 2007, 201, 8888-8892.	2.2	15
48	Nucleation and Growth of 3C-SiC Single Crystals from the Vapor Phase. Materials Science Forum, 2009, 615-617, 31-36.	0.3	15
49	Growth of Boron Nitride on (0001) AlN Templates by High Temperature-Hydride Vapor Phase Epitaxy (HT-HVPE). Physics Procedia, 2013, 46, 102-106.	1.2	15
50	Epitaxial growth of AlN on c-plane sapphire by High Temperature Hydride Vapor Phase Epitaxy: Influence of the gas phase N/Al ratio and low temperature protective layer. Surface and Coatings Technology, 2013, 237, 118-125.	2.2	15
51	Defects formation in sublimation grown 6H-SiC single crystal boules. Diamond and Related Materials, 1997, 6, 1249-1261.	1.8	14
52	Chemical vapor deposition of thin films and coatings: Evaluation and process modeling. Surface and Coatings Technology, 2007, 202, 790-797.	2.2	14
53	Current and voltage distributions in a tubular solid oxide fuel cell (SOFC). Journal of Applied Electrochemistry, 2008, 38, 497-505.	1.5	14
54	Aluminum nitride homoepitaxial growth on polar and nonâ€polar AlN PVT substrates by high temperature CVD (HTCVD). Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2019-2021.	0.8	14

#	Article	IF	CITATIONS
55	Evidence for a Cr metastable phase as a tracer in DLI-MOCVD chromium hard coatings usable in high temperature environment. Applied Surface Science, 2017, 422, 198-206.	3.1	14
56	Epitaxial Growth of AlN on (0001) Sapphire: Assessment of HVPE Process by a Design of Experiments Approach. Coatings, 2017, 7, 136.	1.2	14
57	Study of 3C-SiC nucleation on (0001) 6H-SiC nominal surfaces by the CF-PVT method. Journal of Crystal Growth, 2005, 275, e609-e613.	0.7	13
58	CFD modeling of the high-temperature HVPE growth of aluminum nitride layers on c-plane sapphire: from theoretical chemistry to process evaluation. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	13
59	Study of surface reaction during selective epitaxy growth of silicon by thermodynamic analysis and density functional theory calculation. Journal of Crystal Growth, 2017, 468, 278-282.	0.7	13
60	Modeling of SiC-CVD on Si-face/C-face in a horizontal hot-wall reactor. Journal of Crystal Growth, 2005, 275, e515-e520.	0.7	12
61	Vapor growth of SiC bulk crystals and its challenge of doping. Surface and Coatings Technology, 2006, 201, 4026-4031.	2.2	12
62	Characterization of Bulk <111> 3C-SiC Single Crystals Grown on 4H-SiC by the CF-PVT Method. Materials Science Forum, 2006, 527-529, 99-102.	0.3	12
63	Deposition and characterization of (Ti, Al)N coatings deposited by thermal LPCVD in an industrial reactor. Surface and Coatings Technology, 2019, 358, 923-933.	2.2	12
64	Surface modification using lasers and ion beams. Materials Science and Technology, 1989, 5, 806-812.	0.8	11
65	Evaporation Behavior of SiC Powder for Single Crystal Growth-An Experimental Study on Thermodynamics and Kinetics. Materials Science Forum, 2000, 338-342, 91-94.	0.3	11
66	Electron Back Scattering Diffraction (EBSD) as a Tool for the Investigation of 3C-SiC Nucleation and Growth on 6H or 4H. Materials Science Forum, 2004, 457-460, 387-390.	0.3	11
67	Numerical modelling for CVD simulation and process optimization: coupled thermochemical and mass transport approaches. Surface and Coatings Technology, 1993, 61, 274-281.	2.2	10
68	Enlargement of SiC Crystals: Defect Formation at the Interfaces. Materials Science Forum, 1998, 264-268, 45-48.	0.3	10
69	Progress in SiC Bulk Growth. Materials Science Forum, 2000, 338-342, 13-16.	0.3	10
70	Numerical modeling of SiC–CVD in a horizontal hot-wall reactor. Microelectronic Engineering, 2006, 83, 100-103.	1.1	10
71	Chemical vapour deposition and atomic layer deposition of amorphous and nanocrystalline metallic coatings: Towards deposition of multimetallic films. Journal of Alloys and Compounds, 2010, 504, S422-S424.	2.8	10
72	Effects of the V/III ratio on the quality of aluminum nitride grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 362-365.	0.8	10

#	Article	IF	CITATIONS
73	High temperature oxidation of niobium superficially coated by laser treatment. Materials Chemistry and Physics, 1987, 16, 423-432.	2.0	9
74	Modified Physical Vapor Transport Growth of SiC - Control of Gas Phase Composition for Improved Process Conditions. Materials Science Forum, 2005, 483-485, 25-30.	0.3	9
75	Structure and deformation behavior of Zr–Cu thin films deposited on Kapton substrates. Surface and Coatings Technology, 2014, 239, 171-176.	2.2	9
76	A niching genetic algorithm applied to optimize a SiC-bulk crystal growth system. Journal of Crystal Growth, 2017, 468, 914-918.	0.7	9
77	Contribution to the modeling of CVD silicon carbide growth. European Physical Journal Special Topics, 1999, 09, Pr8-205-Pr8-212.	0.2	8
78	Modelling of SiC sublimation growth process: analyses of macrodefects formation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 61-62, 82-85.	1.7	8
79	Growth of boron nitride films on wâ€AlN (0001), 4° offâ€cut 4Hâ€SiC (0001), W (110) and Cr (110) substrates by Chemical Vapor Deposition. Crystal Research and Technology, 2016, 51, 231-238.	0.6	8
80	La boruration superficielle du fer par faisceau laser. Materiaux Et Techniques, 1985, 73, 699-708.	0.3	8
81	Thermal Oxidation of Ion-Implanted Metals. Defect and Diffusion Forum, 1988, 57-58, 189-206.	0.4	7
82	A coupled approach to thermochemical and mass transport modeling: application to TiSi2 deposition by CVD. Applied Surface Science, 1993, 73, 71-81.	3.1	7
83	MOCVD processed platinum–aluminum coatings on titanium alloys. Surface and Coatings Technology, 2004, 188-189, 49-54.	2.2	7
84	Optical mapping of aluminum doped p-type SiC wafers. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 598-601.	0.8	7
85	Numerical Analysis of Growth Condition on SiC-CVD in the Horizontal Hot-Wall Reactor. Materials Science Forum, 2005, 483-485, 53-56.	0.3	7
86	High-speed Growth and Characterization of Polycrystalline AlN Layers by High Temperature Chemical Vapor Deposition (HTCVD). ECS Transactions, 2009, 25, 323-326.	0.3	7
87	Top Seeded Solution Growth of 3C-SiC Single Crystals. Materials Science Forum, 2009, 615-617, 41-44.	0.3	7
88	Growth and Characterization of Thick Polycrystalline AlN Layers by HTCVD. Journal of the Electrochemical Society, 2011, 158, H328.	1.3	7
89	High temperature oxidation of bismuth-implanted iron. Corrosion Science, 1983, 23, 1181-1187.	3.0	6
90	Influence of laser surface boronizing on the high-temperature oxidation of nickel. Materials Letters, 1986, 4, 102-106.	1.3	6

#	Article	IF	CITATIONS
91	Oxidation of ion-implanted niobium in the 300–700°C temperature range. Materials Chemistry and Physics, 1986, 15, 45-60.	2.0	6
92	Revêtements de carbure de bore sur fer élaborés sous irradiation laser I. Elaboration des revêtements. Surface and Coatings Technology, 1988, 35, 263-273.	2.2	6
93	Experimental Investigation of 4H-SiC Bulk Crystal Growth. Materials Science Forum, 1998, 264-268, 17-20.	0.3	6
94	Combined thermodynamic and mass transport modeling for material processing from the vapor phase. Thin Solid Films, 2000, 365, 264-274.	0.8	6
95	Contribution of numerical simulation to silicon carbide bulk growth and epitaxy. Journal of Physics Condensed Matter, 2004, 16, S1579-S1595.	0.7	6
96	Characterization of Thick 2-Inch 4H-SiC Layers Grown by the Continuous Feed-Physical Vapor Transport Method. Materials Science Forum, 2004, 457-460, 91-94.	0.3	6
97	Investigation of the charge carrier concentration in highly aluminum doped SiC using Raman scattering. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 558-561.	0.8	6
98	Developments of TaN ALD Process for 3D Conformal Coatings. Chemical Vapor Deposition, 2011, 17, 284-295.	1.4	6
99	Reactive chemical vapor deposition of heteroepitaxial Ti _{1â^'x} Al _x N films. CrystEngComm, 2018, 20, 1711-1715.	1.3	6
100	Macroscopic modelling of silicon carbide sublimation: toward a microscopic modelling of defect formation. Surface and Coatings Technology, 1997, 94-95, 279-284.	2.2	5
101	Defects in sublimation-grown SiC bulk crystals. Journal of Physics Condensed Matter, 2002, 14, 13009-13018.	0.7	5
102	Free Growth of 4H-SiC by Sublimation Method. Materials Science Forum, 2004, 457-460, 71-74.	0.3	5
103	Growth of Thick AlN Layers by High Temperature CVD (HTCVD). Materials Science Forum, 0, 600-603, 1269-1272.	0.3	5
104	A comparison between ion implantation and laser alloying of iron for oxidation resistance improvement. Journal of Materials Science, 1986, 21, 4101-4106.	1.7	4
105	Modelling of SiC sublimation growth process : Influence of experimental parameters on crystal shape. European Physical Journal Special Topics, 1999, 09, Pr8-213-Pr8-219.	0.2	4
106	Numerical Simulation of SiC Boule Growth by Sublimation. Materials Science Forum, 2000, 338-342, 25-30.	0.3	4
107	Simulation of the Large-Area Growth of Homoepitaxial 4H-SiC by Chemical Vapor Deposition. Materials Science Forum, 2002, 389-393, 223-226.	0.3	4
108	Vapor phase techniques for the fabrication of homoepitaxial layers of silicon carbide: process modeling and characterization. Applied Surface Science, 2003, 212-213, 177-183.	3.1	4

#	Article	IF	CITATIONS
109	Micro-Optical Characterization Study of Highly p-Type Doped SiC:Al Wafers. Materials Science Forum, 2005, 483-485, 393-396.	0.3	4
110	High temperature processing of poly-SiC substrates from the vapor phase for wafer-bonding. Surface and Coatings Technology, 2006, 201, 4014-4020.	2.2	4
111	Numerical modeling and experimental verification of modified-PVT crystal growth of SiC. Journal of Crystal Growth, 2007, 303, 337-341.	0.7	4
112	Laser surface alloying of 316L stainless steel : different hardening routes and related microstructures. European Physical Journal Special Topics, 1994, 04, C4-77-C4-80.	0.2	3
113	Heat and mass transfer simulation of SiC boule growth by sublimation. Materials Research Society Symposia Proceedings, 2000, 640, 1.	0.1	3
114	Progress and Limits of the Numerical Simulation of SiC Bulk and Epitaxy Growth Processes. Materials Science Forum, 2005, 483-485, 3-8.	0.3	3
115	Modeling and Experimental Verification of SiC M-PVT Bulk Crystal Growth. Materials Science Forum, 2006, 527-529, 75-78.	0.3	3
116	Numerical modeling of silicon carbide epitaxy in a horizontal hot-wall reactor. Journal of Crystal Growth, 2007, 303, 334-336.	0.7	3
117	Influence of total pressure and precursors flow rates on the growth of aluminium nitride by high temperature chemical vapor deposition (HTCVD). Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S348-S351.	0.8	3
118	High temperature chemical vapor deposition of AlN/W1â^'xRex coatings on bulk SiC. Surface and Coatings Technology, 2010, 205, 1302-1306.	2.2	3
119	Improvements of the Continuous Feed-Physical Vapor Transport Technique (CF-PVT) for the Seeded Growth of 3C-SiC Crystals. Materials Science Forum, 2010, 645-648, 63-66.	0.3	3
120	Study of the Spontaneous Nucleation of 3C-SiC Single Crystals Using CF-PVT Technique. Materials Science Forum, 0, 645-648, 55-58.	0.3	3
121	Significance of initial stages on the epitaxial growth of AlN using high temperature halide chemical vapor deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 511-514.	0.8	3
122	HVPE of aluminum nitride, film evaluation and multiscale modeling of the growth process. Journal of Crystal Growth, 2017, 468, 235-240.	0.7	3
123	Revêtements de carbure de bore sur fer élaborés sous irradiation laser II. Oxydation des revêtements. Surface and Coatings Technology, 1988, 35, 275-283.	2.2	2
124	Laser surface alloying using metal salt precursors. Surface and Coatings Technology, 1991, 45, 443-448.	2.2	2
125	The behaviour in SO2 at high temperatures of Feî—,B coatings on Fe obtained by ion beam, laser or pack-cementation techniques. Corrosion Science, 1993, 35, 1073-1083.	3.0	2
126	The modelling routes for the chemical vapour deposition process: application to Si1â^'xGex deposition. Applied Surface Science, 1995, 91, 34-43.	3.1	2

#	Article	IF	CITATIONS
127	Thermodynamic equilibrium and mass transport coupled modelling of the chemical vapour deposition process. Thin Solid Films, 1996, 281-282, 64-67.	0.8	2
128	Progress in 4H-SiC Bulk Growth. Materials Science Forum, 2001, 353-356, 21-24.	0.3	2
129	Ab Initio Study of Silicon Carbide: Bulk and Surface Structures. Materials Science Forum, 2001, 353-356, 111-114.	0.3	2
130	Solid-Phase Epitaxial Growth of Bulk SiC Single Crystals. Materials Science Forum, 2002, 389-393, 143-146.	0.3	2
131	Epitaxial silicon carbide simulations vs. experiments: etching, growth rates and aluminum/nitrogen doping. Materials Research Society Symposia Proceedings, 2002, 742, 141.	0.1	2
132	Investigation of Defects in 4H-SiC by Synchrotron Topography, Raman Spectroscopy Imaging and Photoluminescence Spectroscopy Imaging. Materials Science Forum, 2003, 433-436, 265-268.	0.3	2
133	Towards a Continuous Feeding of the PVT Growth Process: an Experimental Investigation. Materials Science Forum, 2003, 433-436, 25-28.	0.3	2
134	Experiment and Modeling of the Large-Area Etching and Growth Rate of Epitaxial SiC. Materials Science Forum, 2003, 433-436, 141-144.	0.3	2
135	Comparison between Various Chemical Systems for the CVD Step in the CF-PVT Crystal Growth Method. Materials Science Forum, 2004, 457-460, 135-138.	0.3	2
136	Editorial: Silicon Carbide CVD for Electronic Device Applications. Chemical Vapor Deposition, 2006, 12, 463-464.	1.4	2
137	Processing of Poly-SiC Substrates with Large Grains for Wafer-Bonding. Materials Science Forum, 2006, 527-529, 71-74.	0.3	2
138	Gas Fed Top-Seeded Solution Growth of Silicon Carbide. Materials Science Forum, 2006, 527-529, 111-114.	0.3	2
139	In Situ Observation of Mass Transfer in the CF-PVT Growth Process by X-Ray Imaging. Materials Science Forum, 2006, 527-529, 63-66.	0.3	2
140	Comparative Study of Differently Grown 3C-SiC Single Crystals with Birefringence Microscopy. Materials Science Forum, 0, 600-603, 71-74.	0.3	2
141	Bulk Growth of SiC. Materials Research Society Symposia Proceedings, 2008, 1069, 1.	0.1	2
142	Influence of the N/Al Ratio in the Gas Phase on the Growth of AlN by High Temperature Chemical Vapor Deposition (HTCVD). Materials Science Forum, 2009, 615-617, 987-990.	0.3	2
143	Simulation of the large-area growth of homoepitaxial 4H-Sic by chemical vapor deposition. European Physical Journal Special Topics, 2001, 11, Pr3-1079-Pr3-1086.	0.2	2

144 MODELING OF COLD WALL CHEMICAL VAPOR DEPOSITION REACTORS (FOR SEMICONDUCTOR) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
145	Coupled Thermodynamic - Mass Transfer Modeling of the SiC Boule Growth by the PVT Method. Materials Science Forum, 2001, 353-356, 61-64.	0.3	1
146	A Study of HTCVD Renewing of the SiC Polycrystalline Source during the PVT Process. Materials Science Forum, 2003, 433-436, 87-90.	0.3	1
147	Heat Transfer Modeling of a New Crystal Growth Process. Materials Science Forum, 2003, 433-436, 103-106.	0.3	1
148	Nitrogen Doping of Epitaxial SiC: Experimental Evidence of the Re-Incorporation of Etched Nitrogen during Growth. Materials Science Forum, 2004, 457-460, 731-734.	0.3	1
149	Recent Progress of SiC Hot-Wall Epitaxy and Its Modeling. Materials Science Forum, 2006, 527-529, 129-134.	0.3	1
150	Giant Burgers Vector Micropipe-Dislocations in Silicon Carbide Investigated by Atomic Force Microscopy. Materials Science Forum, 2006, 527-529, 435-438.	0.3	1
151	Growth of AlN and AlN-SiC Solid Solution by Sublimation Method. Materials Science Forum, 2006, 527-529, 1501-1504.	0.3	1
152	Modeling Approach of a New Anode Concept for Gradual Internal Reforming. ECS Transactions, 2007, 7, 1419-1428.	0.3	1
153	Modeling multilayer coating systems in solar receivers. Surface and Coatings Technology, 2020, 399, 126102.	2.2	1
154	High temperature oxidation behaviour of laser surface alloyed iron-silicon coatings on iron. European Physical Journal Special Topics, 1993, 03, C9-625-C9-633.	0.2	1
155	Characterization of Bulk <111> 3C-SiC Single Crystals Grown on 4H-SiC by the CF-PVT Method. Materials Science Forum, 0, , 99-102.	0.3	1
156	Chemical Vapor Deposition of Thick Tungsten Coatings: Mass Transport Modelling and Experiments. Journal De Physique III, 1995, 5, 1145-1160.	0.3	1
157	CVD on Bacteria Networks. Chemical Vapor Deposition, 2003, 9, 179-180.	1.4	Ο
158	Defect Reduction in SiC Crystals Grown by the Modified Lely Method. Materials Science Forum, 2003, 433-436, 83-86.	0.3	0
159	In Situ SiC Feeding by Chemical Vapor Deposition for Bulk Growth. Materials Science Forum, 2004, 457-460, 139-142.	0.3	Ο
160	Silicon Carbide Growth: C/Si Ratio Evaluation and Modeling. Materials Research Society Symposia Proceedings, 2006, 911, 2.	0.1	0
161	Mechanism of Orientation Selection for the Growth Of (111) Twin Boundary Free 3C-SiC Single Crystals on Hexagonal Basis. Materials Science Forum, 2007, 556-557, 199-202.	0.3	0
162	Silicon Carbide Growth:C/Si Ratio Evaluation and Modeling. Materials Science Forum, 0, 600-603, 83-88.	0.3	0

#	Article	IF	CITATIONS
163	Modeling and Experimental Verification of SiC M-PVT Bulk Crystal Growth. Materials Science Forum, 0, , 75-78.	0.3	0
164	Giant Burgers Vector Micropipe-Dislocations in Silicon Carbide Investigated by Atomic Force Microscopy. Materials Science Forum, 0, , 435-438.	0.3	0
165	MgO growth by liquid injection chemical vapor deposition: experiments, modeling and simulation. Annales De Chimie: Science Des Materiaux, 2008, 33, 159-172.	0.2	0
166	Superficial remelting of Ni-P coatings under laser beam. Influence on their corrosion behavior. , 1989, , .		0
167	TRANSPORT PHENOMENA AND REACTOR DESIGN FOR CHROMIUM CARBIDE DEPOSITION. European Physical Journal Special Topics, 1991, 02, C2-111-C2-118.	0.2	0
168	HIGH TEMPERATURE PROPERTIES OF LASER ALLOYED TITANIUM. European Physical Journal Special Topics, 1991, 01, C7-55-C7-59.	0.2	0
169	Modelling of CVD reactors : thermochemical and mass transport approaches for Si1-xGex deposition. European Physical Journal Special Topics, 1993, 03, C3-17-C3-23.	0.2	0
170	Thermodynamique et transport de matière : vers la CAO des couches minces. Revue De Metallurgie, 1993, 90, 1095-1095.	0.3	0
171	High temperature attack by SO ₂ of laser boronized iron. European Physical Journal Special Topics, 1993, 03, C9-599-C9-606.	0.2	0
172	Croissance de couches de Si1-xGexpar réaction chimique a partir d'une phase gazeuse : étude thermodynamique et analyse du transfert de matière. Journal De Physique III, 1995, 5, 759-773.	0.3	0
173	Thermochemical and Mass Transport Modelling of the Chemical Vapour Deposition of Si _{1-x} Ge _x . European Physical Journal Special Topics, 1995, 05, C5-63-C5-70.	0.2	0
174	Chemical Vapour Deposition of Thick Tungsten Coatings : Raman Measurements and Mass Transport Modelling. European Physical Journal Special Topics, 1995, 05, C5-143-C5-150.	0.2	0
175	PRINCIPLE OF CONSTITUTION OF SURFACE ALLOYS UNDER LASER BEAM. Journal De Physique Colloque, 1987, 48, C7-151-C7-158.	0.2	0