MaÅ,gorzata Darewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/518746/publications.pdf

Version: 2024-02-01

53 papers 1,918 citations

331538 21 h-index 254106 43 g-index

53 all docs 53 docs citations

53 times ranked 1976 citing authors

#	Article	IF	CITATIONS
1	BIOPEP-UWM Virtual—A Novel Database of Food-Derived Peptides with In Silico-Predicted Biological Activity. Applied Sciences (Switzerland), 2022, 12, 7204.	1.3	14
2	Databases of bioactive peptides. , 2021, , 309-330.		4
3	Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes. Molecules, 2021, 26, 712.	1.7	4
4	Gouda Cheese with Modified Content of \hat{I}^2 -Casein as a Source of Peptides with ACE- and DPP-IV-Inhibiting Bioactivity: A Study Based on In Silico and In Vitro Protocol. International Journal of Molecular Sciences, 2021, 22, 2949.	1.8	14
5	Properties of peptides released from salmon and carp via simulated human-like gastrointestinal digestion described applying quantitative parameters. PLoS ONE, 2021, 16, e0255969.	1.1	8
6	Characteristics of Biopeptides Released In Silico from Collagens Using Quantitative Parameters. Foods, 2020, 9, 965.	1.9	28
7	Soybean (Glycine max) Protein Hydrolysates as Sources of Peptide Bitter-Tasting Indicators: An Analysis Based on Hybrid and Fragmentomic Approaches. Applied Sciences (Switzerland), 2020, 10, 2514.	1.3	15
8	Association between Intake of Fermented Dairy Products and Diet Quality, Health Beliefs in a Representative Sample of Polish Population. , 2020, 61 , .		1
9	Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 2019, 61, 103486.	1.6	52
10	Free Accessible Databases as a Source of Information about Food Components and Other Compounds with Anticancer Activity–Brief Review. Molecules, 2019, 24, 789.	1.7	6
11	Structure–Activity Prediction of ACE Inhibitory/Bitter Dipeptides—A Chemometric Approach Based on Stepwise Regression. Molecules, 2019, 24, 950.	1.7	13
12	BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. International Journal of Molecular Sciences, 2019, 20, 5978.	1.8	454
13	Understanding the nature of bitter-taste di- and tripeptides derived from food proteins based on chemometric analysis. Journal of Food Biochemistry, 2019, 43, e12500.	1.2	38
14	Introducing a Simple Equation To Express Oxidation States as an Alternative to Using Rules Associated with Words Alone. Journal of Chemical Education, 2018, 95, 340-342.	1.1	3
15	Databases and Associated Bioinformatic Tools in Studies of Food Allergens, Epitopes and Haptens – a Review. Polish Journal of Food and Nutrition Sciences, 2018, 68, 103-113.	0.6	3
16	Peptides Derived from Foods as Supportive Diet Components in the Prevention of Metabolic Syndrome. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 63-81.	5.9	39
17	Structural characteristics of food protein-originating di- and tripeptides using principal component analysis. European Food Research and Technology, 2018, 244, 1751-1758.	1.6	17
18	Annotation of Peptide Structures Using SMILES and Other Chemical Codes–Practical Solutions. Molecules, 2017, 22, 2075.	1.7	11

#	Article	IF	Citations
19	European Carp (Cyprinus carpio L.) Protein-Derived Ex Vivo Digests and In Vitro Hydrolysates Differ in the ACE I Inhibitory Activity and Composition of Released ACE Inhibitory Peptides. Protein and Peptide Letters, 2017, 24, 156-164.	0.4	3
20	Internet Databases of the Properties, Enzymatic Reactions, and Metabolism of Small Moleculesâ€"Search Options and Applications in Food Science. International Journal of Molecular Sciences, 2016, 17, 2039.	1.8	20
21	Carp proteins as a source of bioactive peptides - an in silico approach. Czech Journal of Food Sciences, 2016, 34, 111-117.	0.6	21
22	Antioxidant properties of salmon (<i>Salmo salar</i> L.) protein fraction hydrolysates revealed following their <i>ex vivo</i> digestion and <i>in vitro</i> hydrolysis. Journal of the Science of Food and Agriculture, 2016, 96, 2764-2772.	1.7	27
23	BIOPEP database of sensory peptides and amino acids. Food Research International, 2016, 85, 155-161.	2.9	116
24	Angiotensin I-converting enzyme inhibitory peptides in oat (Avena sativa L.) proteins-derived digests – In silico and in vitro study. New Biotechnology, 2016, 33, S173.	2.4	2
25	Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches. Food Research International, 2016, 89, 27-38.	2.9	74
26	Antioxidant properties of carp (Cyprinus carpio L.) protein ex vivo and in vitro hydrolysates. Food Chemistry, 2016, 194, 770-779.	4.2	30
27	Common Amino Acid Subsequences in a Universal Proteomeâ€"Relevance for Food Science. International Journal of Molecular Sciences, 2015, 16, 20748-20773.	1.8	23
28	Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. Journal of Functional Foods, 2015, 16, 334-351.	1.6	74
29	Ex vivo digestion of carp muscle tissue – ACE inhibitory and antioxidant activities of the obtained hydrolysates. Food and Function, 2015, 6, 210-217.	2.1	24
30	The Occurrence of Sequences Identical with Epitopes from the Allergen Pen a 1.0102 Among Food and Non-Food Proteins. Polish Journal of Food and Nutrition Sciences, 2015, 65, 21-29.	0.6	5
31	Using Internet Databases for Food Science Organic Chemistry Students To Discover Chemical Compound Information. Journal of Chemical Education, 2015, 92, 874-876.	1.1	14
32	BIOLOGICALLY ACTIVE PEPTIDES FROM FOOD PROTEINS: IN SILICO, IN VITRO AND IN VIVO STUDIES, APPLICATION ASPECTS, AND SAFETY EVALUATION. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2015, , .	0.1	1
33	BIOLOGICALLY ACTIVE PEPTIDES RELEASED FROM FOOD PROTEINS. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2015, 21, .	0.1	2
34	Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar) Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes. International Journal of Molecular Sciences, 2014, 15, 14077-14101.	1.8	60
35	Foodâ€Originating ACE Inhibitors, Including Antihypertensive Peptides, as Preventive Food Components in Blood Pressure Reduction. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 114-134.	5.9	239
36	Biological and Chemical Databases for Research into the Composition of Animal Source Foods. Food Reviews International, 2013, 29, 321-351.	4.3	19

#	Article	IF	Citations
37	Evaluation of In Silico Prediction Possibility of Epitope Sequences Using Experimental Data Concerning Allergenic Food Proteins Summarized in BIOPEP Database Polish Journal of Food and Nutrition Sciences, 2012, 62, 151-157.	0.6	6
38	Epitopic hexapeptide sequences from Baltic cod parvalbumin beta (allergen Gad c 1) are common in the universal proteome. Peptides, 2012 , 38 , $105-109$.	1.2	6
39	The Preventive Potential of Milk and Colostrum Proteins and Protein Fragments. Food Reviews International, 2011, 27, 357-388.	4.3	35
40	Celiac Diseaseâ€"Background, Molecular, Bioinformatics and Analytical Aspects. Food Reviews International, 2008, 24, 311-329.	4.3	11
41	BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC INTERNATIONAL, 2008, 91, 965-80.	0.7	131
42	Computational Characterisation and Identification of Peptides for in silico Detection of Potentially Celiac-Toxic Proteins. Food Science and Technology International, 2007, 13, 125-133.	1.1	19
43	Food Proteins as Precursors of Bioactive Peptides — Classification Into Families. Food Science and Technology International, 2007, 13, 393-404.	1.1	51
44	Formation and stabilization of emulsion with A1, A2 and B \hat{l}^2 -casein genetic variants. European Food Research and Technology, 2007, 226, 147-152.	1.6	10
45	Evolving research trends in bioinformatics. Briefings in Bioinformatics, 2006, 8, 88-95.	3.2	43
46	Some properties of \hat{l}^2 -casein modified via phosphatase. Acta Alimentaria, 2005, 34, 403-415.	0.3	6
47	Bioinformatic-aided prediction for release possibilities of bioactive peptides from plant proteins. Acta Alimentaria, 2004, 33, 227-235.	0.3	31
48	Action of the chymosin on reconstituted casein systems. Acta Alimentaria, 2003, 32, 169-179.	0.3	1
49	The effect of glycosylation on emulsifying and structural properties of bovine \hat{I}^2 -casein. Molecular Nutrition and Food Research, 2001, 45, 15-20.	0.0	28
50	Dephosphorylation-induced structural changes in \hat{l}^2 -casein and its amphiphilic fragment in relation to emulsion properties. Biochimie, 2000, 82, 191-195.	1.3	23
51	Modulation of physico-chemical properties of bovine b-casein by nonenzymatic glycation associated with enzymatic dephosphorylation. Acta Alimentaria, 1999, 28, 339-354.	0.3	14
52	Some physico-chemical properties and structural changes of bovine \hat{l}^2 -casein upon glycation. Molecular Nutrition and Food Research, 1998, 42, 213-214.	0.0	13
53	Hybrid Approach in the Analysis of Bovine Milk Protein Hydrolysates as a Source of Peptides Containing Di- and Tripeptide Bitterness Indicators. Polish Journal of Food and Nutrition Sciences, 0, , 139-150.	0.6	12