Aideen E Ryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5187166/publications.pdf Version: 2024-02-01

Δίδεεν Ε Ργλν

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Molecular Therapy, 2015, 23, 812-823.	3.7	877
2	Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax, 2012, 67, 496-501.	2.7	238
3	Antiâ€donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far?. Immunology and Cell Biology, 2013, 91, 40-51.	1.0	205
4	Anti-Donor Immune Responses Elicited by Allogeneic Mesenchymal Stem Cells and Their Extracellular Vesicles: Are We Still Learning?. Frontiers in Immunology, 2017, 8, 1626.	2.2	116
5	Extracellular vesicles as modulators of wound healing. Advanced Drug Delivery Reviews, 2018, 129, 394-406.	6.6	116
6	Effects of Intratracheal Mesenchymal Stromal Cell Therapy during Recovery and Resolution after Ventilator-induced Lung Injury. Anesthesiology, 2013, 118, 924-932.	1.3	92
7	Addressing the "Fas Counterattack―Controversy: Blocking Fas Ligand Expression Suppresses Tumor Immune Evasion of Colon Cancer In vivo. Cancer Research, 2005, 65, 9817-9823.	0.4	83
8	Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13030-13035.	3.3	81
9	Chondrogenic Differentiation Increases Antidonor Immune Response to Allogeneic Mesenchymal Stem Cell Transplantation. Molecular Therapy, 2014, 22, 655-667.	3.7	76
10	Considerations for treatment duration in responders to immune checkpoint inhibitors. , 2021, 9, e001901.		69
11	Stromal Cell PD-L1 Inhibits CD8+ T-cell Antitumor Immune Responses and Promotes Colon Cancer. Cancer Immunology Research, 2018, 6, 1426-1441.	1.6	66
12	Changes in immunological profile of allogeneic mesenchymal stem cells after differentiation: should we be concerned?. Stem Cell Research and Therapy, 2014, 5, 99.	2.4	61
13	Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget, 2017, 8, 80568-80588.	0.8	61
14	Autophagosomal ll̂ºBα Degradation Plays a Role in the Long Term Control of Tumor Necrosis Factor-α-induced Nuclear Factor-κB (NF-κB) Activity. Journal of Biological Chemistry, 2011, 286, 22886-22893.	1.6	57
15	Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?. Oncotarget, 2016, 7, 60752-60774.	0.8	56
16	Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene, 2016, 35, 1261-1270.	2.6	54
17	Immune Modulation to Improve Tissue Engineering Outcomes for Cartilage Repair in the Osteoarthritic Joint. Tissue Engineering - Part B: Reviews, 2015, 21, 55-66.	2.5	50
18	A 3D View of Colorectal Cancer Models in Predicting Therapeutic Responses and Resistance. Cancers, 2021, 13, 227.	1.7	48

Aideen E Ryan

#	Article	IF	CITATIONS
19	Targeting colon cancer cell NF-κB promotes an anti-tumour M1-like macrophage phenotype and inhibits peritoneal metastasis. Oncogene, 2015, 34, 1563-1574.	2.6	47
20	Mesenchymal Stem Cell Therapy Promotes Corneal Allograft Survival in Rats by Local and Systemic Immunomodulation. American Journal of Transplantation, 2014, 14, 2023-2036.	2.6	42
21	Third-Party Allogeneic Mesenchymal Stromal Cells Prevent Rejection in a Pre-sensitized High-Risk Model of Corneal Transplantation. Frontiers in Immunology, 2018, 9, 2666.	2.2	39
22	Fas Ligand Promotes Tumor Immune Evasion of Colon Cancer In Vivo. Cell Cycle, 2006, 5, 246-249.	1.3	38
23	Pullulan: a new cytoadhesive for cell-mediated cartilage repair. Stem Cell Research and Therapy, 2015, 6, 34.	2.4	38
24	TGF-β1-Licensed Murine MSCs Show Superior Therapeutic Efficacy in Modulating Corneal Allograft Immune Rejection InÂVivo. Molecular Therapy, 2020, 28, 2023-2043.	3.7	38
25	TNFâ€Î±/ILâ€1β—licensed mesenchymal stromal cells promote corneal allograft survival <i>via</i> myeloid cellâ€mediated induction of Foxp3 ⁺ regulatory T cells in the lung. FASEB Journal, 2019, 33, 9404-9421.	0.2	37
26	Adenoviral Transduction of Mesenchymal Stem Cells: In Vitro Responses and In Vivo Immune Responses after Cell Transplantation. PLoS ONE, 2012, 7, e42662.	1.1	31
27	Beyond DNA Damage: Exploring the Immunomodulatory Effects of Cyclophosphamide in Multiple Myeloma. HemaSphere, 2020, 4, e350.	1.2	29
28	Induction of Apoptosis in Renal Cell Carcinoma by Reactive Oxygen Species: Involvement of Extracellular Signal-Regulated Kinase 1/2, p38Î/Ĵ³, Cyclooxygenase-2 Down-Regulation, and Translocation of Apoptosis-Inducing Factor. Molecular Pharmacology, 2006, 69, 1879-1890.	1.0	28
29	Donorâ€derived equine mesenchymal stem cells suppress proliferation of mismatched lymphocytes. Equine Veterinary Journal, 2016, 48, 253-260.	0.9	28
30	Secreted factors from metastatic prostate cancer cells stimulate mesenchymal stem cell transition to a proâ€ŧumourigenic â€~activated' state that enhances prostate cancer cell migration. International Journal of Cancer, 2018, 142, 2056-2067.	2.3	27
31	vIL-10-overexpressing human MSCs modulate naÃ ⁻ ve and activated T lymphocytes following induction of collagenase-induced osteoarthritis. Stem Cell Research and Therapy, 2016, 7, 74.	2.4	25
32	Regulation of NF-κB responses by epigenetic suppression of IκBα expression in HCT116 intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, G96-G105.	1.6	24
33	Culture expanded primary chondrocytes have potent immunomodulatory properties and do not induce an allogeneic immune response. Osteoarthritis and Cartilage, 2016, 24, 521-533.	0.6	23
34	The "Fas counterattack―is not an active mode of tumor immune evasion in colorectal cancer with high-level microsatellite instability. Human Pathology, 2008, 39, 243-250.	1.1	21
35	Targeting the EP1 receptor reduces Fas ligand expression and increases the antitumor immune response in an <i>in vivo</i> model of colon cancer. International Journal of Cancer, 2013, 133, 825-834.	2.3	21
36	Interspecies Incompatibilities Limit the Immunomodulatory Effect of Human Mesenchymal Stromal Cells in the Rat. Stem Cells, 2018, 36, 1210-1215.	1.4	21

AIDEEN E RYAN

#	Article	IF	CITATIONS
37	Nitric Oxide Modulates Metabolic Processes in the Tumor Immune Microenvironment. International Journal of Molecular Sciences, 2021, 22, 7068.	1.8	21
38	CyBorD-DARA is potent initial induction for MM and enhances ADCP: initial results of the 16-BCNI-001/CTRIAL-IE 16-02 study. Blood Advances, 2019, 3, 1815-1825.	2.5	19
39	The pseudo-caspase FLIP(L) regulates cell fate following p53 activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17808-17819.	3.3	18
40	Fas ligand expression in human and mouse cancer cell lines; a caveat on over-reliance on mRNA data. Journal of Carcinogenesis, 2006, 5, 5.	2.5	16
41	Donor Bone Marrow–derived Dendritic Cells Prolong Corneal Allograft Survival and Promote an Intragraft Immunoregulatory Milieu. Molecular Therapy, 2013, 21, 2102-2112.	3.7	13
42	Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncolmmunology, 2021, 10, 1859263.	2.1	13
43	Potentiation of Anti-Myeloma Activity of Daratumumab with Combination of Cyclophosphamide, Lenalidomide or Bortezomib Via a Tumor Secretory Response That Greatly Augments Macrophage-Induced ADCP. Blood, 2016, 128, 2101-2101.	0.6	13
44	Regulating Immunogenicity and Tolerogenicity of Bone Marrow-Derived Dendritic Cells through Modulation of Cell Surface Glycosylation by Dexamethasone Treatment. Frontiers in Immunology, 2017, 8, 1427.	2.2	10
45	Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer. Cancers, 2021, 13, 5998.	1.7	8
46	Subconjunctival administration of low-dose murine allogeneic mesenchymal stromal cells promotes corneal allograft survival in mice. Stem Cell Research and Therapy, 2021, 12, 227.	2.4	7
47	Administration of Human Non-Diabetic Mesenchymal Stromal Cells to a Murine Model of Diabetic Fracture Repair: A Pilot Study. Cells, 2020, 9, 1394.	1.8	4
48	Activation of innate-adaptive immune machinery by poly(I:C) exposes a therapeutic vulnerability to prevent relapse in stroma-rich colon cancer. Gut, 2022, 71, 2502-2517.	6.1	4
49	Mesenchymal stem cell therapy for osteoarthritis: how apoptotic cells modulate inflammation. Osteoarthritis and Cartilage, 2018, 26, S297.	0.6	3
50	Abstract 3867: STAT1-related antigen processing and presentation dictates prognosis in the fibroblast-rich subtype of stage II/III colon cancer. , 2020, , .		3
51	Rapid Development of a Quantitative-Competitive (qc) RT-PCR Assay Using a Composite Primer Approach. , 2002, 193, 093-102.		2
52	Mechanisms of Nitric Oxide-Dependent Regulation of Tumor Invasion and Metastasis. , 2015, , 49-63.		1
53	Mesenchymal Stromal Cell Sialylation Modulates Antitumor Immune Responses In Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e93-e94.	0.2	1
54	Cybord-Dara in Newly Diagnosed Transplant-Eligible Multiple Myeloma: Follow up Results from the 16-Bcni-001/Ctrial-IE 16-02 Study Show High Rates of MRD Negativity at End of Treatment. Blood, 2021, 138, 2756-2756.	0.6	1

Aideen E Ryan

#	Article	IF	CITATIONS
55	T1993 Inhibition of NF-κB in Colon Cancer Cells Significantly Decreases Tumour Burden and Increases Survival Time in a Mouse Model of Peritoneal Metastasis. Gastroenterology, 2009, 136, A-616.	0.6	0
56	M1808 Analysis of the IL-6/STAT3/AKT Signalling Pathways in Patients With Inflammatory Bowel Disease: Effect of Disease Activity and Duration. Gastroenterology, 2010, 138, S-423.	0.6	0
57	557 TNF-α-Induced Long-Term NF-κB Activation in Intestinal Epithelial Cells: Evidence for Autophagic Degradation of IκBα. Gastroenterology, 2010, 138, S-77.	0.6	0
58	W1761 Inhibition of NF-κB in Colon Cancer Cells Prevents Peritoneal Dissemination Through Polarisation of Tumor-Associated Macrophages Towards an M1-Like Phenotype. Gastroenterology, 2010, 138, S-734.	0.6	0
59	Mo1615 Targeting Fasl Increases the Anti-Tumor Immune Response in an In Vivo Model of Colon Cancer Gastroenterology, 2012, 142, S-642.	0.6	0
60	Allogeneic chondroprogenitors display immunosuppressive properties and are non-immunogenic in vitro. Osteoarthritis and Cartilage, 2015, 23, A267.	0.6	0
61	Inducible Expression of Viral Interleukin 10 in Mouse Mesenchymal Stem Cells Increases their Immuno-suppressive Capacity. Osteoarthritis and Cartilage, 2017, 25, S267.	0.6	0
62	Establishment of the in vivo immunological profile in collagenase induced osteoarthritis. Osteoarthritis and Cartilage, 2018, 26, S127.	0.6	0
63	Local administration of non-diabetic MSCs to diabetic femoral fractures enhances callus remodelling and deposition of reparative bone. Endocrine Abstracts, 0, , .	0.0	0
64	Abstract 2693: Inflammatory signalling in the colon tumour microenvironment enhances stromal cell mediated suppression of anti-tumour immune responses. , 2017, , .		0
65	Abstract 3789: Role of NOS2-COX2 crosstalk in tumor microenvironment of estrogen receptor-negative breast cancer and its therapeutic implications. , 2018, , .		0
66	Abstract 2409: FLIP(L) determines colon cancer cell fate following p53 activation. , 2020, , .		0
67	AB066. Elucidating the circulating and tumour-specific immune populations in a cohort of colon cancer patients. Mesentery and Peritoneum, 0, 4, AB066-AB066.	0.1	0
68	865â€Sugar high: Does the sialic acid profile of cancer-associated fibroblasts induce a more tumour-permissive microenvironment?. , 2020, , .		0
69	864â€The mesenchymal stromal compartment in colorectal cancer greatly alters the innate tumour immune microenvironment both in 2D and 3D culture systems. , 2020, , .		Ο