
Richard Warth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/518677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epilepsy, Ataxia, Sensorineural Deafness, Tubulopathy, and <i>KCNJ10</i> Mutations. New England Journal of Medicine, 2009, 360, 1960-1970.	13.9	518
2	Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nature Genetics, 2013, 45, 440-444.	9.4	460
3	A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature, 2000, 403, 196-199.	13.7	459
4	Mineralocorticoid receptor knockout mice: Pathophysiology of Na+metabolism. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9424-9429.	3.3	393
5	Mutations in SLC6A19, encoding BOAT1, cause Hartnup disorder. Nature Genetics, 2004, 36, 999-1002.	9.4	272
6	Expression and Function of Epithelial Anoctamins. Journal of Biological Chemistry, 2010, 285, 7838-7845.	1.6	194
7	KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and) Tj ETQq1 1 0.784 United States of America, 2010, 107, 14490-14495.	314 rgBT / 3.3	Overlock 10 186
8	<i>KCNJ5</i> Mutations in European Families With Nonglucocorticoid Remediable Familial Hyperaldosteronism. Hypertension, 2012, 59, 235-240.	1.3	176
9	The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology, 2001, 120, 1363-1371.	0.6	174
10	Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO Journal, 2008, 27, 179-187.	3.5	168
11	Somatic <i>ATP1A1</i> , <i>ATP2B3</i> , and <i>KCNJ5</i> Mutations in Aldosterone-Producing Adenomas. Hypertension, 2014, 63, 188-195.	1.3	151
12	Early Aldosterone-Induced Gene Product Regulates the Epithelial Sodium Channel by Deubiquitylation. Journal of the American Society of Nephrology: JASN, 2007, 18, 1084-1092.	3.0	137
13	Task2 potassium channels set central respiratory CO ₂ and O ₂ sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2325-2330.	3.3	132
14	Physiology and Pathophysiology of Potassium Channels in Gastrointestinal Epithelia. Physiological Reviews, 2008, 88, 1119-1182.	13.1	124
15	A new class of inhibitors of cAMP-mediated Cl? secretion in rabbit colon, acting by the reduction of cAMP-activated K+ conductance. Pflugers Archiv European Journal of Physiology, 1995, 429, 517-530.	1.3	123
16	Role of KCNE1-Dependent K+ Fluxes in Mouse Proximal Tubule. Journal of the American Society of Nephrology: JASN, 2001, 12, 2003-2011.	3.0	119
17	Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8215-8220.	3.3	117
18	Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. Journal of Physiology, 2004, 561, 547-557.	1.3	109

#	Article	IF	CITATIONS
19	Bestrophin and TMEM16—Ca2+ activated Clâ^' channels with different functions. Cell Calcium, 2009, 46, 233-241.	1.1	108
20	Lack of Connexin 40 Causes Displacement of Renin-Producing Cells from Afferent Arterioles to the Extraglomerular Mesangium. Journal of the American Society of Nephrology: JASN, 2007, 18, 1103-1111.	3.0	104
21	Mistargeting of Peroxisomal EHHADH and Inherited Renal Fanconi's Syndrome. New England Journal of Medicine, 2014, 370, 129-138.	13.9	99
22	Rescue of the mineralocorticoid receptor knock-out mouse. Pflugers Archiv European Journal of Physiology, 1999, 438, 245-254.	1.3	95
23	Disruption of the K+ Channel β-Subunit KCNE3 Reveals an Important Role in Intestinal and Tracheal Clâ^' Transport. Journal of Biological Chemistry, 2010, 285, 7165-7175.	1.6	95
24	The cAMP-regulated and 293B-inhibited K+ conductance of rat colonic crypt base cells. Pflugers Archiv European Journal of Physiology, 1996, 432, 81-88.	1.3	86
25	A Novel Y152C KCNJ5 Mutation Responsible for Familial Hyperaldosteronism Type III. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1861-E1865.	1.8	86
26	TWIK1, a unique background channel with variable ion selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5499-5504.	3.3	85
27	Effects of IKs channel inhibitors in insulin-secreting INS-1 cells. Pflugers Archiv European Journal of Physiology, 2005, 451, 428-436.	1.3	78
28	Cloning and Function of the Rat Colonic Epithelial K + Channel K V LQT1. Journal of Membrane Biology, 2001, 179, 155-164.	1.0	76
29	Does Sumoylation Control K2P1/TWIK1 Background K+ Channels?. Cell, 2007, 130, 563-569.	13.5	75
30	Renal Fanconi syndrome: taking a proximal look at the nephron. Nephrology Dialysis Transplantation, 2015, 30, 1456-1460.	0.4	74
31	Germline De Novo Mutations in ATP1A1 Cause Renal Hypomagnesemia, Refractory Seizures, and Intellectual Disability. American Journal of Human Genetics, 2018, 103, 808-816.	2.6	74
32	Ca2+ regulated K+ and non-selective cation channels in the basolateral membrane of rat colonic crypt base cells. Pflugers Archiv European Journal of Physiology, 1996, 432, 1011-1022.	1.3	73
33	Molecular and functional characterization of the small Ca2+-regulated K+ channel (rSK4) of colonic crypts. Pflugers Archiv European Journal of Physiology, 1999, 438, 437-444.	1.3	67
34	The Small Conductance K+ Channel, KCNQ1. Journal of Biological Chemistry, 2001, 276, 42268-42275.	1.6	66
35	Altered electroretinograms in patients with KCNJ10 mutations and EAST syndrome. Journal of Physiology, 2011, 589, 1681-1689.	1.3	66
36	ARF6â€dependent interaction of the TWIK1 K + channel with EFA6, a GDP/GTP exchange factor for ARF6. EMBO Reports, 2004, 5, 1171-1175.	2.0	64

#	Article	IF	CITATIONS
37	Visinin-Like 1 Is Upregulated in Aldosterone-Producing Adenomas With <i>KCNJ5</i> Mutations and Protects From Calcium-Induced Apoptosis. Hypertension, 2012, 59, 833-839.	1.3	64
38	Task3 Potassium Channel Gene Invalidation Causes Low Renin and Salt-Sensitive Arterial Hypertension. Endocrinology, 2012, 153, 4740-4748.	1.4	63
39	Small-conductance Cl? channels in HT29 cells: activation by Ca2+, hypotonic cell swelling and 8-Br-cGMP. Pflugers Archiv European Journal of Physiology, 1992, 421, 238-246.	1.3	60
40	LMX1B is Essential for the Maintenance of Differentiated Podocytes in Adult Kidneys. Journal of the American Society of Nephrology: JASN, 2013, 24, 1830-1848.	3.0	60
41	Altered potassium balance and aldosterone secretion in a mouse model of human congenital long QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8792-8797.	3.3	59
42	The multifaceted phenotype of the knockout mouse for the KCNE1 potassium channel gene. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R639-R648.	0.9	58
43	Potassium Channel Silencing by Constitutive Endocytosis and Intracellular Sequestration. Journal of Biological Chemistry, 2010, 285, 4798-4805.	1.6	57
44	The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Archiv European Journal of Physiology, 2011, 461, 423-435.	1.3	57
45	Pathogenesis of Adrenal Aldosterone-Producing Adenomas Carrying Mutations of the Na+/K+-ATPase. Endocrinology, 2015, 156, 4582-4591.	1.4	57
46	Pharmacology and Pathophysiology of Mutated KCNJ5 Found in Adrenal Aldosterone-Producing Adenomas. Endocrinology, 2014, 155, 1353-1362.	1.4	56
47	A Novel KCNJ5-insT149 Somatic Mutation Close to, but Outside, the Selectivity Filter Causes Resistant Hypertension by Loss of Selectivity for Potassium. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1765-E1773.	1.8	55
48	Molecular and functional characterization of the small Ca 2+ -regulated K + channel (rSK4) of colonic crypts. Pflugers Archiv European Journal of Physiology, 1999, 438, 437-444.	1.3	54
49	Cellular Pathophysiology of an Adrenal Adenoma-Associated Mutant of the Plasma Membrane Ca2+-ATPase ATP2B3. Endocrinology, 2016, 157, 2489-2499.	1.4	54
50	Glycine Amidinotransferase (GATM), Renal Fanconi Syndrome, and Kidney Failure. Journal of the American Society of Nephrology: JASN, 2018, 29, 1849-1858.	3.0	53
51	The role of KCNQ1/KCNE1 K+ channels in intestine and pancreas: lessons from the KCNE1 knockout mouse. Pflugers Archiv European Journal of Physiology, 2002, 443, 822-828.	1.3	52
52	Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule. American Journal of Physiology - Renal Physiology, 2009, 296, F1504-F1513.	1.3	52
53	The Role of K+ Channels in Colonic Clâ^ Secretion. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 271-275.	0.7	51
54	No Potassium, No Acid: K+ Channels and Gastric Acid Secretion. Physiology, 2007, 22, 335-341.	1.6	49

#	Article	IF	CITATIONS
55	Potassium channels in epithelial transport. Pflugers Archiv European Journal of Physiology, 2003, 446, 505-513.	1.3	48
56	Role of NKCC in BK channel-mediated net K ⁺ secretion in the CCD. American Journal of Physiology - Renal Physiology, 2011, 301, F1088-F1097.	1.3	47
57	Small-conductance chloride channels induced by cAMP, Ca2+, and hypotonicity in HT29 cells: ion selectivity, additivity and stilbene sensitivity. Pflugers Archiv European Journal of Physiology, 1992, 421, 447-454.	1.3	46
58	KCNE Beta Subunits Determine pH Sensitivity of KCNQ1 Potassium Channels. Cellular Physiology and Biochemistry, 2007, 19, 21-32.	1.1	46
59	Defects in KCNJ16 Cause a Novel Tubulopathy with Hypokalemia, Salt Wasting, Disturbed Acid-Base Homeostasis, and Sensorineural Deafness. Journal of the American Society of Nephrology: JASN, 2021, 32, 1498-1512.	3.0	46
60	Induction of the epithelial Na+ channel via glucocorticoids in mineralocorticoid receptor knockout mice. Pflugers Archiv European Journal of Physiology, 2001, 443, 297-305.	1.3	44
61	TASK1 and TASK3 Potassium Channels: Determinants of Aldosterone Secretion and Adrenocortical Zonation. Hormone and Metabolic Research, 2010, 42, 450-457.	0.7	44
62	Characterisation of the Rat SK4/IK1 K ⁺ Channel. Cellular Physiology and Biochemistry, 2001, 11, 219-230.	1.1	43
63	The very small-conductance K+ channel KVLQT1 and epithelial function. Pflugers Archiv European Journal of Physiology, 2000, 440, 202-206.	1.3	42
64	K+ channels and colonic function. , 2000, 140, 1-62.		40
65	The Ion Conductances of CFPAC-1 Cells. Cellular Physiology and Biochemistry, 1993, 3, 2-16.	1.1	36
66	Function of K+ Channels in the Intestinal Epithelium. Journal of Membrane Biology, 2003, 193, 67-78.	1.0	36
67	Severe Hyperaldosteronism in Neonatal Task3 Potassium Channel Knockout Mice Is Associated With Activation of the Intraadrenal Renin-Angiotensin System. Endocrinology, 2013, 154, 2712-2722.	1.4	35
68	A Chromanol Type of K ⁺ Channel Blocker Inhibits Forskolin- but Not Carbachol-Mediated Cl- Secretion in Rat and Rabbit Colon. Cellular Physiology and Biochemistry, 1995, 5, 204-210.	1.1	31
69	Deoxycholic acid (DOC) affects the transport properties of distal colon. Pflugers Archiv European Journal of Physiology, 2000, 439, 532-540.	1.3	30
70	Kidney and Colon Electrolyte Transport in CHIF Knockout Mice. Cellular Physiology and Biochemistry, 2004, 14, 113-120.	1.1	30
71	Two-pore domain potassium channels in the adrenal cortex. Pflugers Archiv European Journal of Physiology, 2015, 467, 1027-1042.	1.3	29
72	Local Control of Aldosterone Production and Primary Aldosteronism. Trends in Endocrinology and Metabolism, 2016, 27, 123-131.	3.1	29

#	Article	IF	CITATIONS
73	pH regulation in isolated in vitro perfused rat colonic crypts. Pflugers Archiv European Journal of Physiology, 2000, 441, 118-124.	1.3	26
74	Deoxycholic acid (DOC) affects the transport properties of distal colon. Pflugers Archiv European Journal of Physiology, 2000, 439, 532-540.	1.3	24
75	Regulation of the Na+2Clâ^K+ coâ€transporter—mechanisms in the rectal gland of Squalus acanthias with implications for the thick ascending limb of Henle. Nephrology Dialysis Transplantation, 2000, 15, 16-18.	0.4	24
76	Cystic fibrosis and CFTR. Pflugers Archiv European Journal of Physiology, 2001, 443, S3-S7.	1.3	22
77	Dkk3 is a component of the genetic circuitry regulating aldosterone biosynthesis in the adrenal cortex. Human Molecular Genetics, 2012, 21, 4922-4929.	1.4	22
78	Diastrophic Dysplasia Sulfate Transporter (SLC26A2) Is Expressed in the Adrenal Cortex and Regulates Aldosterone Secretion. Hypertension, 2014, 63, 1102-1109.	1.3	21
79	Hypertonic cell shrinkage reduces the K + conductance of rat colonic crypts. Pflugers Archiv European Journal of Physiology, 1998, 436, 227-232.	1.3	19
80	Regulation of the Na+2Cl–K+ cotransporter in isolated rat colon crypts. Pflugers Archiv European Journal of Physiology, 2000, 439, 378-384.	1.3	17
81	The cellular mechanisms of Cl - secretion induced by C-type natriuretic peptide (CNP). Experiments on isolated in vitro perfused rectal gland tubules of Squalus acanthias. Pflugers Archiv European Journal of Physiology, 1999, 438, 15-22.	1.3	15
82	Collecting system–specific deletion of Kcnj10 predisposes for thiazide- and low-potassium diet–induced hypokalemia. Kidney International, 2020, 97, 1208-1218.	2.6	15
83	Regulation of the Na + 2Cl - K + cotransporter in in vitro perfused rectal gland tubules of Squalus acanthias. Pflugers Archiv European Journal of Physiology, 1998, 436, 521-528.	1.3	13
84	Regulation of the Na + 2Cl - K + cotransporter in isolated rat colon crypts. Pflugers Archiv European Journal of Physiology, 2000, 439, 378-384.	1.3	12
85	pH-regulatory mechanisms in in vitro perfused rectal gland tubules of Squalus acanthias. Pflugers Archiv European Journal of Physiology, 1998, 436, 248-254.	1.3	10
86	Distinct Mitochondrial Pathologies Caused by Mutations of the Proximal Tubular Enzymes EHHADH and GATM. Frontiers in Physiology, 2021, 12, 715485.	1.3	10
87	The role of cytosolic Ca 2+ in the secretion of NaCl in isolated in vitro perfused rectal gland tubules of Squalus acanthias. Pflugers Archiv European Journal of Physiology, 1998, 436, 133-140.	1.3	9
88	Sex-dependent differences in the in vivo respiratory phenotype of the TASK-1 potassium channel knockout mouse. Respiratory Physiology and Neurobiology, 2017, 245, 13-28.	0.7	9
89	Novel mutations in the KCNJ10 gene associated to a distinctive ataxia, sensorineural hearing loss and spasticity clinical phenotype. Neurogenetics, 2020, 21, 135-143.	0.7	9
90	Does stimulation of NaCl secretion in in vitro perfused rectal gland tubules of Squalus acanthias increase membrane capacitance?. Pflugers Archiv European Journal of Physiology, 1998, 436, 538-544.	1.3	7

#	Article	IF	CITATIONS
91	A Founder Mutation in EHD1 Presents with Tubular Proteinuria and Deafness. Journal of the American Society of Nephrology: JASN, 2022, 33, 732-745.	3.0	7
92	Osmotically Induced Conductance and Capacitance Changes in in vitro Perfused Rectal Gland Tubules of Squalus acanthias. Kidney and Blood Pressure Research, 1998, 21, 317-324.	0.9	6
93	Abnormal respiration under hyperoxia in TASK-1/3 potassium channel double knockout mice. Respiratory Physiology and Neurobiology, 2017, 244, 17-25.	0.7	6
94	Cellular Pathophysiology of Mutant Voltage-Dependent Ca2+ Channel CACNA1H in Primary Aldosteronism. Endocrinology, 2020, 161, .	1.4	6
95	The very small-conductance K. Pflugers Archiv European Journal of Physiology, 2000, 440, 202.	1.3	5
96	Genetic variants in eleven central and peripheral chemoreceptor genes in sudden infant death syndrome. Pediatric Research, 2022, 92, 1026-1033.	1.1	4
97	EAST/SeSAME Syndrome and Beyond: The Spectrum of Kir4.1- and Kir5.1-Associated Channelopathies. Frontiers in Physiology, 2022, 13, 852674.	1.3	4
98	The in vivo respiratory phenotype of the adenosine A1 receptor knockout mouse. Respiratory Physiology and Neurobiology, 2016, 222, 16-28.	0.7	3
99	Dynamics of Renal Electrolyte Excretion in Growing Mice. Nephron Physiology, 2014, 124, 7-13.	1.5	2
100	The TFIIH Subunit p89 (XPB) Localizes to the Centrosome during Mitosis. Analytical Cellular Pathology, 2010, 32, 121-130.	0.7	2
101	Evidence for Na + /Ca 2+ exchange in the rectal gland of Squalus acanthias. Pflugers Archiv European Journal of Physiology, 1999, 439, 49-51.	1.3	1
102	Evidence for Na+/Ca2+ exchange in the rectal gland of Squalus acanthias. Pflugers Archiv European Journal of Physiology, 1999, 439, 49-51.	1.3	1
103	Membrane Trafficking Controls K2P1/TWIK1 Channel Expression at the Cell Surface. Biophysical Journal, 2010, 98, 537a.	0.2	0
104	Potassium channels in adrenocortical cells. Current Opinion in Endocrine and Metabolic Research, 2019, 8, 1-8.	0.6	0
105	Abstract 011: Identification and Electrophysiological Characterization of a Novel Somatic Mutation (insT149KCNJ5) of the Potassium Channel Kir3.4 (KCNJ5). Hypertension, 2014, 64, .	1.3	0