
Pranjal K Baruah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5185928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra-High Stokes Shift in Polycyclic Chromeno[2,3- <i>b</i>]Indoles. Polycyclic Aromatic Compounds, 2022, 42, 1710-1727.	2.6	3
2	Green synthesis ofÂ1,3-oxazines byÂvisible light-promoted catalyst-free C–H activation/cyclization of tertiary amines. Environmental Chemistry Letters, 2022, 20, 109-118.	16.2	14
3	Ten Years of Glory in the $\hat{I}\pm$ -Functionalizations of Acetophenones: Progress Through Kornblum Oxidation and Câ \in "H Functionalization. Topics in Current Chemistry, 2022, 380, 1.	5.8	28
4	lodineâ€DMSOâ€Promoted Oxygenation of Indoles: Synthesis of Isatin and Isoindigo. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	4
5	Progress of Metalâ€Free Visibleâ€Lightâ€Driven αâ€Câ^'H Functionalization of Tertiary Amines: A Decade Journey. Asian Journal of Organic Chemistry, 2022, 11, .	[.] 2.7	16
6	Visible-Light-Driven Z-Selective Reaction of Methyl Ketones with DMSO: A Mild Synthetic Approach to Methylthio-Substituted 1,4-Enedione Promoted by Selectfluorâ,,¢. Synthesis, 2021, 53, 1095-1102.	2.3	7
7	α-C–H functionalization of tertiary amines catalyzed/promoted by molecular iodine/derivatives. New Journal of Chemistry, 2021, 45, 14345-14359.	2.8	14
8	Green Biosynthesis of Copper Oxide Nanoparticles Using Waste Colocasia esculenta Leaves Extract and Their Application as Recyclable Catalyst Towards the Synthesis of 1,2,3-triazoles. BioNanoScience, 2021, 11, 189-199.	3.5	20
9	Bio-synthesized silver nanoparticles using <i>Zingiber officinale</i> rhizome extract as efficient catalyst for the degradation of environmental pollutants. Inorganic and Nano-Metal Chemistry, 2020, 50, 57-65.	1.6	23
10	Diastereoselective sp3â€C–H Functionalization of Arylmethyl Ketones and Transformation of <i>E</i> ―to <i>Z</i> â€Products Through Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 424-428.	2.4	16
11	l-Proline-catalyzed regioselective C1 arylation of tetrahydroisoquinolines through a multicomponent reaction under solvent-free conditions. Organic and Biomolecular Chemistry, 2020, 18, 6514-6518.	2.8	16
	Development of βâ€carotene loaded nanoemulsion using the industrial waste of orange (<i>Citrus) Tj ETQq0 0 0 (</i>	0	
12	colorant. Journal of Food Processing and Preservation, 2020, 44, e14429.	2.0	14
13	Recent Advances on the C2-Functionalization of Indole via Umpolung. Topics in Current Chemistry, 2020, 378, 22.	5.8	30
14	Câ€C Bond Cleavage by the Reaction of Cyclic Amines or Indoles with Activated Olefins: A Redoxâ€Neutral Mechanism for the Reducing Action of Tetrahydroisoquinolines. ChemistrySelect, 2019, 4, 10425-10429.	1.5	4
15	Recent advances in intramolecular C–O/C–N/C–S bond formation <i>via</i> C–H functionalization. Organic Chemistry Frontiers, 2019, 6, 3445-3489.	4.5	93
16	A one-pot catalyst/external oxidant/solvent-free cascade approach to pyrimidines <i>via</i> a 1,5-hydride transfer. Green Chemistry, 2019, 21, 69-74.	9.0	41
17	Cu(I)/Fe(III) promoted dicarbonylation of aminopyrazole via oxidative C H coupling with methyl ketones. Tetrahedron Letters, 2019, 60, 1189-1192.	1.4	9
18	Multiâ€Component Reaction of 6â€Aminouracils, Aldehydes and Secondary Amines: Conversion of the Products into Pyrimido[4,5―d]pyrimidines through Câ€H Amination/Cyclization. ChemistrySelect, 2019, 4, 3381-3386.	1.5	11

#	Article	IF	CITATIONS
19	Oxidative Coupling of Naphthols to Ketones: An Approach to 1,2â€Diketones. ChemistrySelect, 2018, 3, 1693-1696.	1.5	7
20	I2/TBHP/cyclohexanone a novel catalyst system for the oxidative dearomatization of indoles to indolin-3-ones at room temperature under solvent-free condition. Catalysis Communications, 2018, 106, 68-72.	3.3	17
21	Copper-Catalyzed Tandem Multi-Component Approach to 1,3-Oxazines at Room Temperature by Cross-Dehydrogenative Coupling Using Methanol as C1 Feedstock. Synlett, 2018, 29, 1171-1175.	1.8	14
22	Multi-component synthesis of 3-substituted indoles and their cyclisation to α-carbolines <i>via</i> I ₂ -promoted intramolecular C2 oxidative amination/aromatisation at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 7806-7810.	2.8	18
23	l-Proline catalyzed domino Michael addition of N-substituted anilines. Tetrahedron Letters, 2018, 59, 4430-4433.	1.4	9
24	Conversion of Fructose and Xylose into Platform Chemicals Using Organoâ€Functionalized Mesoporous Material. ChemistrySelect, 2018, 3, 10971-10976.	1.5	5
25	A revisit to the multi-component reaction of indole, aldehyde, and N-substituted aniline catalyzed by PMA–SiO2. Monatshefte Für Chemie, 2018, 149, 2245-2252.	1.8	2
26	One-pot sequential multi-component reaction: Synthesis of 3-substituted indoles. Synthetic Communications, 2018, 48, 2074-2082.	2.1	7
27	Introducing tetramethylurea as a new methylene precursor: a microwave-assisted RuCl ₃ -catalyzed cross dehydrogenative coupling approach to bis(indolyl)methanes. Organic and Biomolecular Chemistry, 2017, 15, 1435-1443.	2.8	35
28	lodine/ <i>tert</i> â€Butyl Hydroperoxideâ€Mediated Reaction of Indoles with Dimethylformamide/Dimethylacetamide to Synthesize Bis―and Tris(indolyl)methanes. ChemistrySelect, 2017, 2, 140-146.	1.5	32
29	Base-promoted three-component cascade approach to unsymmetrical bis(indolyl)methanes. Tetrahedron Letters, 2017, 58, 1999-2003.	1.4	30
30	Visible light-promoted metal-free intramolecular cross dehydrogenative coupling approach to 1,3-oxazines. Tetrahedron Letters, 2017, 58, 4006-4010.	1.4	23
31	Catalyst-free multi-component cascade C–H-functionalization in water using molecular oxygen: an approach to 1,3-oxazines. Green Chemistry, 2017, 19, 4036-4042.	9.0	44
32	CAN-catalyzed microwave promoted reaction of indole with Betti bases under solvent-free condition and evaluation of antibacterial activity of the products. Synthetic Communications, 2017, 47, 2007-2014.	2.1	8
33	Iodine/Hydrogen Peroxide Promoted Intramolecular Oxidative C–O Bond Formation in Ethanol at Room Temperature: A Green Approach to 1,3-Oxazines. Synlett, 2017, 28, 461-466.	1.8	27
34	Base-Promoted Three-Component One-Pot Approach to 3-(α,α-Diarylmethyl)indoles via Arylation of 3-Indolylalcohols. Synthesis, 2017, 49, 1401-1409.	2.3	12
35	BrÃ,nstedâ€Acidâ€Mediated Divergent Reactions of Betti Bases with Indoles: An Approach to Chromeno[2,3â€ <i>b</i>]indoles through Intramolecular Dehydrogenative C2â€Alkoxylation of Indole. European Journal of Organic Chemistry, 2016, 2016, 3441-3448.	2.4	39
36	Copper catalyzed oxidative deamination of Betti bases: an efficient approach for benzoylation/formylation of naphthols and phenols. RSC Advances, 2016, 6, 40552-40559.	3.6	31

Pranjal K Baruah

#	Article	IF	CITATIONS
37	Room Temperature Ring Opening of Epoxides Over Triflic Acid Functionalized Cage Like Mesoporous Materials. ChemistrySelect, 2016, 1, 1650-1657.	1.5	13
38	Hydrogen-Bond-Catalyzed Arylation of 3-(Aminoalkyl)indoles via C–N Bond Cleavage with Thiourea under Microwave Irradiation: An Approach to 3-(α,α-Diarylmethyl)indoles. Synlett, 2016, 27, 2788-2794.	1.8	18
39	Metal-free intramolecular α-sp3 C–H oxygenation of tert-amine: An efficient approach to 1,3-oxazines. Tetrahedron Letters, 2016, 57, 5479-5483.	1.4	26
40	C-C bond cleavage: Metal-free-catalyzed reaction of Betti bases with various heterocycles under microwave irradiation. Synthetic Communications, 2016, 46, 1940-1946.	2.1	9
41	Deamination of Indole Mannich Bases: An Efficient Route to 3- Benzyl/Alkylindoles via a Metal-Free Transfer Hydrogenation Under Microwave Irradiation. Current Organocatalysis, 2015, 3, 84-89.	0.5	3
42	Deamination of Betti bases: a facile route to 1-alkyl-2-naphthols and phenols via a metal-free transfer hydrogenation under microwave irradiation. Tetrahedron Letters, 2015, 56, 4115-4118.	1.4	13
43	Cage Like Al-KIT-5 Mesoporous Materials for C–C Bond Formation Reactions Under Solvent Free Conditions. Catalysis Letters, 2015, 145, 2037-2045.	2.6	2
44	Room temperature solvent free aza-Michael reactions over nano-cage mesoporous materials. Journal of Molecular Catalysis A, 2014, 394, 145-150.	4.8	17
45	Self-complementary quadruple hydrogen bonding motifs: from design to function. RSC Advances, 2013, 3, 21202.	3.6	33
46	Can a C–H···O Interaction Be a Determinant of Conformation?. Journal of the American Chemical Society, 2012, 134, 12064-12071.	13.7	110
47	Synthesis, anticonvulsant activity, and neuropathic pain-attenuating activity of N-benzyl 2-amino-2-(hetero)aromatic acetamides. Bioorganic and Medicinal Chemistry, 2012, 20, 3551-3564.	3.0	11
48	Sheet-forming abiotic hetero foldamers. Chemical Communications, 2008, , 712-714.	4.1	21
49	BINOL-Based FoldamersAccess to Oligomers with Diverse Structural Architectures. Journal of Organic Chemistry, 2007, 72, 5077-5084.	3.2	38
50	Enforcing Periodic Secondary Structures in Hybrid Peptides:  A Novel Hybrid Foldamer Containing Periodic I³-Turn Motifs. Journal of Organic Chemistry, 2007, 72, 636-639.	3.2	42
51	6,6-Dibenzyltetrazolo[1,5-a]pyrimidine-5,7(4H,6H)-dione. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3550-o3550.	0.2	0
52	The solid-state behaviour of 4,6-dioxo-5,5-diethylenepyrimidine-2-isobutylurea. CrystEngComm, 2006, 8, 468.	2.6	3
53	Self-Assembly with Degenerate Prototropy. Journal of Organic Chemistry, 2005, 70, 6461-6467.	3.2	45
54	lodine-Catalyzed Synthesis of Alkylthio-Substituted 1,4-Enediones from Styrenes and Dialkyl Sulfoxides. Synthesis, 0, , .	2.3	1