
Jorge Noé DÃ-az de Leon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5185785/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of sulfidation conditions on the unsupported flower-like bimetallic oxide microspheres for the hydrodesulfurization of dibenzothiophene. Catalysis Today, 2022, 394-396, 13-24.	4.4	7
2	Hydrothermal synthesis of bulk Ni impregnated WO3 2D layered structures as catalysts for the desulfurization of 3-methyl thiophene. Chemical Engineering Journal Advances, 2022, 11, 100312.	5.2	4
3	Insight into alcohol transformation over binary Al2O3-Y2O3 mixed oxide nanoparticles. Applied Catalysis B: Environmental, 2022, 315, 121567.	20.2	3
4	Triblock Copolymer Effect During the Synthesis of ZrO2-TiO2 Mixed Oxides Supports for NiW Hydrodesulfurization Catalysts. Topics in Catalysis, 2022, 65, 1516-1529.	2.8	2
5	2,5-Dimethylfuran Production by Catalytic Hydrogenation of 5-Hydroxymethylfurfural Using Ni Supported on Al2O3-TiO2-ZrO2 Prepared by Sol-Gel Method: The Effect of Hydrogen Donors. Molecules, 2022, 27, 4187.	3.8	2
6	Anisole Hydrodeoxygenation: A Comparative Study of Ni/TiO2-ZrO2 and Commercial TiO2 Supported Ni and NiRu Catalysts. Topics in Catalysis, 2022, 65, 1448-1461.	2.8	8
7	Study of supported bimetallic MoRe carbides catalysts for guaiacol conversion. Catalysis Today, 2021, 367, 290-296.	4.4	13
8	Selective removal of sulfur from 3-methyl thiophene under mild conditions over NiW/Al2O3-TiO2 modified by surfactants. Catalysis Today, 2021, 377, 59-68.	4.4	10
9	Conversion of levulinic acid using CuO/WO3(x)-Al2O3 catalysts. Catalysis Today, 2021, 367, 310-319.	4.4	10
10	Magnetic nanostructured based on cobalt–Zinc Ferrites designed for photocatalytic dye degradation. Journal of Physics and Chemistry of Solids, 2021, 150, 109869.	4.0	8
11	The effect of shape and size of 1D and 0D titanium oxide nanorods in the photocatalytic degradation of red amaranth toxic dye. Nano Structures Nano Objects, 2021, 26, 100738.	3.5	7
12	Synthesis and characterization of metal oxides complexes with potential application in HDS reactions. Materials Letters, 2021, 291, 129562.	2.6	3
13	Enhanced CO ₂ Hydrogenation to C ₂₊ Hydrocarbons over Mesoporous <i>x</i> %Fe ₂ O ₃ –Al ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 18660-18671.	3.7	10
14	Template-free, facile synthesis of nickel promoted multi-walled MoS2 & nano-bricks containing hierarchical MoS2 nanotubes from the bulk NiMo oxide. Applied Catalysis B: Environmental, 2021, 298, 120617.	20.2	10
15	Effect of the Structural and Electronic Properties of Rh/CeXZr1-XO2 Catalysts on the Low-temperature Ethanol Steam-reforming. Journal of the Mexican Chemical Society, 2021, 65, .	0.6	0
16	Fundamental Study of Catalytic Functionalities Involved in Effective C–O Cleavage over Ru-Supported Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 18880-18890.	3.7	5
17	Catalytic dehydration of 2 propanol over Al2O3-Ga2O3 and Pd/Al2O3-Ga2O3 catalysts. Catalysis Today, 2020, 356, 339-348.	4.4	15
18	CoNiMo/Al2O3 sulfide catalysts for dibenzothiophene hydrodesulfurization: Effect of the addition of small amounts of nickel. Microporous and Mesoporous Materials, 2020, 309, 110574.	4.4	17

#	Article	IF	CITATIONS
19	Unsupported CoNixMo sulfide hydrodesulfurization catalysts prepared by the thermal decomposition of trimetallic tetrabutylammonium thiomolybdate: effect of nickel on sulfur removal. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 187-198.	1.7	6
20	Relevant aspects of the conversion of guaiacol as a model compound for bio-oil over supported molybdenum oxycarbide catalysts. New Journal of Chemistry, 2020, 44, 12027-12035.	2.8	13
21	Single step and template-free synthesis of Dandelion flower-like core-shell architectures of metal oxide microspheres: Influence of sulfidation on particle morphology & amp; hydrodesulfurization performance. Applied Catalysis B: Environmental, 2020, 277, 119213.	20.2	18
22	Effect of TiO2 particle and pore size on DSSC efficiency. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	3.6	21
23	Noble metals supported on binary γ-Al2O3-α-Ga2O3 oxide as potential low-temperature water-gas shift catalysts. Fuel, 2020, 266, 117031.	6.4	15
24	Synthesis of Aluminium Doped Na-Titanate Nanorods and Its Application as Potential CO2 Hydrogenation Catalysts. Catalysis Letters, 2019, 149, 3361-3369.	2.6	5
25	Hydrodesulfurization activity of Ni-containing unsupported Ga(x)WS2 catalysts. Catalysis Communications, 2019, 130, 105760.	3.3	10
26	New Insight on the Formation of Sodium Titanates 1D Nanostructures and Its Application on CO2 Hydrogenation. Frontiers in Chemistry, 2019, 7, 750.	3.6	7
27	Synergetic effect in RuxMo(1-x)S2/SBA-15 hydrodesulfurization catalysts: Comparative experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 251, 143-153.	20.2	9
28	Composites of Anthraquinone Dyes@HKUSTâ€1 with Tunable Microstructuring: Experimental and Theoretical Interaction Studies. Chemistry - A European Journal, 2019, 25, 4398-4411.	3.3	12
29	Recent Insights in Transition Metal Sulfide Hydrodesulfurization Catalysts for the Production of Ultra Low Sulfur Diesel: A Short Review. Catalysts, 2019, 9, 87.	3.5	71
30	Oxidative dehydrogenation of n-octane over Mg-containing SBA-15 material. Materials Research Innovations, 2018, 22, 247-253.	2.3	3
31	Low-temperature ozone treatment for carbon nanotube template removal: improving the template-based ALD method. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	9
32	Effect of partial Mo substitution by W on HDS activity using sulfide CoMoW/Al2O3–TiO2 catalysts. Fuel, 2018, 233, 644-657.	6.4	28
33	Support effects of NiW hydrodesulfurization catalysts from experiments and DFT calculations. Applied Catalysis B: Environmental, 2018, 238, 480-490.	20.2	26
34	PREPARATION AND EVALUATION OF NiCoMo HYDRODESULFURIZATION CATALYSTS SUPPORTED OVER A BINARY ZEOLITE(BETA)-KIT-6 SILICEOUS MATERIAL. Revista Mexicana De Ingeniera Quimica, 2018, 17, 215-228.	0.4	1
35	Support effects of NiW catalysts for highly selective sulfur removal from light hydrocarbons. Applied Catalysis B: Environmental, 2017, 213, 167-176.	20.2	27
36	Highly active CoMo/Al (10) KIT-6 catalysts for HDS of DBT: Role of structure and aluminum heteroatom in the support matrix. Catalysis Today, 2017, 296, 214-218.	4.4	20

#	Article	IF	CITATIONS
37	Formation of Co-Promoted MoS2 Fullerene-Like Nanostructures on SBA-15 as Effective Hydrodesulfurization Catalyst. Catalysis Letters, 2017, 147, 46-57.	2.6	6
38	Methanol electro-oxidation with alloy nanoparticles of Pt10â^'–Fe supported on CNTs. Fuel, 2016, 182, 1-7.	6.4	21
39	NiW/MgO–TiO2 catalysts for dibenzothiophene hydrodesulfurization: Effect of preparation method. Catalysis Today, 2016, 271, 28-34.	4.4	13
40	Binary γ-Al2O3–α-Ga2O3 as supports of NiW catalysts for hydrocarbon sulfur removal. Applied Catalysis B: Environmental, 2016, 181, 524-533.	20.2	33
41	Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P. Applied Catalysis B: Environmental, 2016, 180, 569-579.	20.2	69
42	Nanocatalizadores para la producción de energÃas limpias. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2016, 8, 45-52.	0.1	0
43	Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 90-95.	1.8	20
44	Ortho-xylene hydroisomerization under pressure on HMS-Ti mesoporous silica decorated with Ga2O3 nanoparticles. Fuel, 2015, 158, 405-415.	6.4	14
45	Insight into copper-mordenite–silica mixtures (CuMOR–SiO2). Comptes Rendus Chimie, 2015, 18, 474-477.	0.5	1
46	Synthesis and characterization of Ga-modified Ti-HMS oxide materials with varying Ga content. Journal of Molecular Catalysis A, 2015, 397, 26-35.	4.8	24
47	Insight of 1D Î ³ -Al2O3 nanorods decoration by NiWS nanoslabs in ultra-deep hydrodesulfurization catalyst. Journal of Catalysis, 2015, 321, 51-61.	6.2	40
48	One dimensional (1D) γ-alumina nanorod linked networks: Synthesis, characterization and application. Applied Catalysis A: General, 2014, 472, 1-10.	4.3	29
49	Hydrodesulfurization enhancement of heavy and light S-hydrocarbons on NiMo/HMS catalysts modified with Al and P. Applied Catalysis A: General, 2014, 484, 108-121.	4.3	34
50	Removal of refractory S-containing compounds from liquid fuels over P-loaded NiMoW/SBA-16 sulfide catalysts. Fuel, 2013, 103, 321-333.	6.4	38
51	Hydrodesulfurization of sulfur refractory compounds: Effect of gallium as an additive in NiWS/γ-Al2O3 catalysts. Journal of Molecular Catalysis A, 2012, 363-364, 311-321.	4.8	59
52	Effect of gallium loading on the hydrodesulfurization activity of unsupported Ga2S3/WS2 catalysts. Applied Catalysis B: Environmental, 2012, 111-112, 10-19.	20.2	48
53	Effect of gallium as an additive in hydrodesulfurization WS2/Î ³ -Al2O3 catalysts. Journal of Molecular Catalysis A, 2010, 323, 1-6.	4.8	51