Nguyen Thi Ai Nhung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5185751/publications.pdf

Version: 2024-02-01

759233 552781 54 742 12 26 citations h-index g-index papers 56 56 56 1058 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega, 2020, 5, 8312-8320.	3.5	213
2	Transitionâ€Metal Complexes of Tetrylones [(CO) ₅ Wâ€E(PPh ₃) ₂] and Tetrylenes [(CO) ₅ Wâ€NHE] (E=C–Pb): A Theoretical Study. Chemistry - A European Journal, 2012, 18, 12733-12748.	3.3	69
3	A highly sensitive fluorescent chemosensor for simultaneous determination of Ag(I), Hg(II), and Cu(II) ions: Design, synthesis, characterization and application. Dyes and Pigments, 2015, 116, 89-96.	3.7	63
4	Coumarin-Based Dual Chemosensor for Colorimetric and Fluorescent Detection of Cu ²⁺ in Water Media. ACS Omega, 2020, 5, 21241-21249.	3.5	47
5	Evaluation of the Inhibitory Activities of COVIDâ€19 of <i>Melaleuca cajuputi</i> li> Oil Using Docking Simulation. ChemistrySelect, 2020, 5, 6312-6320.	1.5	33
6	Iron ions chelation-based antioxidant potential vs. pro-oxidant risk of ferulic acid: A DFT study in aqueous phase. Computational and Theoretical Chemistry, 2020, 1185 , 112905 .	2.5	26
7	Structure and bonding of tetrylone complexes [(CO) ₄ W{E(PPh ₃) ₂ }] (E = C–Pb). Molecular Physics, 2013, 111, 2640-2646.	1.7	23
8	Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Advances, 2021, 11, 11959-11975.	3.6	21
9	Gold nanoclusters as prospective carriers and detectors of pramipexole. RSC Advances, 2021, 11, 16619-16632.	3.6	20
10	A density functional theory study on silver and bis-silver complexes with lighter tetrylene: are silver and bis-silver carbenes candidates for SARS-CoV-2 inhibition? Insight from molecular docking simulation. RSC Advances, 2020, 10, 30961-30974.	3.6	18
11	Novel QSPR modeling of stability constants of metal-thiosemicarbazone complexes by hybrid multivariate technique: GA-MLR, GA-SVR and GA-ANN. Journal of Molecular Structure, 2019, 1195, 95-109.	3.6	16
12	A hemicyanine complex for the detection of thiol biomolecules by fluorescence. Dyes and Pigments, 2016, 131, 301-306.	3.7	14
13	A new rhodamineâ€based fluorescent chemodosimeter for mercuric ions in water media. Luminescence, 2015, 30, 325-329.	2.9	11
14	In-Depth Investigation of a Donor–Acceptor Interaction on the Heavy-Group-14@Group-13-Diyls in Transition-Metal Tetrylone Complexes: Structure, Bonding, and Property. ACS Omega, 2020, 5, 21271-21287.	3.5	11
15	Newly synthesised oxime and lactone derivatives from <i>Dipterocarpus alatus</i> dipterocarpol as anti-diabetic inhibitors: experimental bioassay-based evidence and theoretical computation-based prediction. RSC Advances, 2021, 11, 35765-35782.	3.6	11
16	New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acid. RSC Advances, 2022, 12, 1499-1514.	3.6	11
17	A molecular docking simulation study on potent inhibitors against Rhizoctonia solani and Magnaporthe oryzae in rice: silver-tetrylene and bis-silver-tetrylene complexes vs. validamycin and tricyclazole pesticides. Structural Chemistry, 2021, 32, 135-148.	2.0	10
18	A Dansyl–Diethylenetriamine–Thiourea Conjugate as a Fluorescent Chemodosimeter for Hg2+ Ions in Water Media. Chemistry Letters, 2014, 43, 1034-1036.	1.3	9

#	Article	IF	Citations
19	An insight into C _{sp} â€"Hâ<"ï€ hydrogen bonds and stability of complexes formed by acetylene and its substituted derivatives with benzene and borazine. RSC Advances, 2016, 6, 106662-106670.	3.6	8
20	A Benzothiazolium-derived Colorimetric and Fluorescent Chemosensor for Detection of Hg ²⁺ lons. Chemistry Letters, 2017, 46, 135-138.	1.3	8
21	Screening for Streptococcus pyogenes antibacterial and Candida albicans antifungal bioactivities of organic compounds in natural essential oils of Piper betle L., Cleistocalyx operculatus L. and Ageratum conyzoides L Chemical Papers, 2021, 75, 1507-1519.	2.2	7
22	Ab initio Intermolecular Potential Energy Surface and Calculation of Second Virial Coefficients for the Cl ₂ -Cl ₂ Dimer. Smart Science, 2015, 3, 193-201.	3.2	6
23	Prediction of anticancer activities of cynaroside and quercetin in leaf of plants <i>Cynara scolymus</i> L and <i>Artocarpus incisa</i> L using structure–activity relationship. Cogent Chemistry, 2016, 2, 1212452. Density function theory study of water gas shift reaction on 2Cu/ZnO xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mo< p=""></mml:mo<></mml:mrow>	2.5	6
24			

#	Article	IF	Citations
37	A Computational Screening on Inhibitability of <i>Piper Betle </i> Essential Oil Chemical Structures against Spike Proteins of Mutated SARS-CoV-2-variants D614G, N501Y, and S477N. Smart Science, 2022, 10, 246-263.	3.2	3
38	Roles of H2 O to hydrogen bonds, structure and strength of complexes of CH3 CHS and H2 O. Vietnam Journal of Chemistry, 2019, 57, 425-432.	0.8	2
39	Growth Pattern, Stability, and Properties of Complexes of C ₂ H ₅ OH and <i>n</i> CO ₂ (<i>n</i> = 1–5) Molecules: A Theoretical Study. ACS Omega, 2020, 5, 14408-14416.	3.5	2
40	Theoretical Aspects of Nonconventional Hydrogen Bonds in the Complexes of Aldehydes and Hydrogen Chalcogenides. Journal of Physical Chemistry A, 2021, 125, 10291-10302.	2.5	2
41	Structural characteristics and chemical reactivity of gold-based clusters Aun (n = 16, 17) toward lone pairs. Journal of Molecular Modeling, 2022, 28, 54.	1.8	2
42	Antimicrobial Properties of <i>Distichochlamys citrea</i> M.F. Newman Rhizome <i>n</i> â€Hexane Extract against <i>Streptococcus pyogenes</i> : Experimental Evidences and Computational Screening. ChemistrySelect, 2022, 7, .	1.5	2
43	A Comparison of Donor-acceptor Interactions in Borane Complexes of Divalent Tetrylenes(II) and Divalent Tetrylones(0) using Energy Decomposition Analysis Method with Natural Orbital for Chemical Valence Theory. Smart Science, 2016, 4, 28-37.	3.2	1
44	Structure and property of complexes of group 13 diyl containing subvalent silylone using energy decomposition analysis with natural orbitals for chemical valence. Vietnam Journal of Chemistry, 2018, 56, 742-750.	0.8	1
45	Theoretical assessment of donor–acceptor complexes [X(PPh3)2 → AlH2]+ (X = C–Pb): st bonding. Theoretical Chemistry Accounts, 2019, 138, 1.	ryctures ar	nd
46	Quantum chemical investigation for structures and bonding analysis of molybdenum tetracarbonyl complexes with N-heterocyclic carbene and analogues: helpful information for plant biology research. Journal of Vietnamese Environment, 2015, 6, 142-148.	0.2	1
47	A DFT study of the molecular and electronic structures of cis-dioxidomolybdenum (VI) complex of 8-hydroxyquinoline and 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one with water. Theoretical Chemistry Accounts, 2022, 141, 1.	1.4	1
48	In Silico Inhibitability of Copper Carbenes and Silylenes against Rhizoctonia solani and Magnaporthe oryzae. Journal of Chemistry, 2021, 2021, 1-14.	1.9	1
49	Theoretical exploitation of donor-acceptor ability in low-valent group-14 elements complexes [E(PPh3) Tj ETQq1 1 418-424.	0.784314 0.8	rgBT /Ov <mark>er</mark> 0
50	Coordination complexes of slight tetrylene with platinum(II)-8-hydroxyquinolines: Structure and bonding analysis. Vietnam Journal of Chemistry, 2020, 58, 364-371.	0.8	0
51	Insight prediction of receptor binding activity of a set of benzamide derivatives using hybrid QSAR models: GA-MLR and GA-SVR. Vietnam Journal of Chemistry, 2020, 58, 191-200.	0.8	0
52	Diagram of vapor-liquid equilibria for <i>n</i> -pentane using hybrid Gibbs ensemble Monte Carlo simulation. Vietnam Journal of Chemistry, 2020, 58, 101-107.	0.8	0
53	A quantum chemical computation insight into the donor-acceptor bond interaction of silver complexes with tetrylene. Vietnam Journal of Chemistry, 2017, 55, .	0.8	O
54	A theoretical study of structure, bonding and property of platinum(II)-8-hydroxyquinolines complexes with carbene and heavier homologues. Hue University Journal of Science: Natural Science, 2020, 129, 41-48.	0.1	0