Martin J Holland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5185676/publications.pdf

Version: 2024-02-01

79541 53660 6,956 135 45 73 citations h-index g-index papers 149 149 149 6059 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomics of Ocular <i>Chlamydia trachomatis</i> After 5 Years of SAFE Interventions for Trachoma in Amhara, Ethiopia. Journal of Infectious Diseases, 2022, 225, 994-1004.	1.9	13
2	Impact of azithromycin mass drug administration on the antibiotic-resistant gut microbiome in children: a randomized, controlled trial. Gut Pathogens, 2022, 14, 5.	1.6	17
3	Biannual Administrations of Azithromycin and the Gastrointestinal Microbiome of Malawian Children: A Nested Cohort Study Within a Randomized Controlled Trial. Frontiers in Public Health, 2022, 10, 756318.	1.3	1
4	Mass drug administration with azithromycin for trachoma elimination and the population structure of Streptococcus pneumoniae in the nasopharynx. Clinical Microbiology and Infection, 2021, 27, 864-870.	2.8	3
5	A Chlamydia trachomatis VD1-MOMP vaccine elicits cross-neutralizing and protective antibodies against C/C-related complex serovars. Npj Vaccines, 2021, 6, 58.	2.9	15
6	Fecal biomarkers of environmental enteric dysfunction and the gut microbiota of rural Malawian children: An observational study. Heliyon, 2021, 7, e08194.	1.4	6
7	Facial cleanliness indicators by time of day: results of a cross-sectional trachoma prevalence survey in Senegal. Parasites and Vectors, 2020, 13, 556.	1.0	6
8	Viability PCR shows that non-ocular surfaces could contribute to transmission of Chlamydia trachomatisÂinfection in trachoma. PLoS Neglected Tropical Diseases, 2020, 14, e0008449.	1.3	18
9	DjinniChip: evaluation of a novel molecular rapid diagnostic device for the detection of Chlamydia trachomatis in trachoma-endemic areas. Parasites and Vectors, 2020, 13, 533.	1.0	3
10	Immunopathogenesis of Progressive Scarring Trachoma: Results of a 4-Year Longitudinal Study in Tanzanian Children. Infection and Immunity, 2020, 88, .	1.0	4
11	The link between ocular infection with non-chlamydial bacteria and trachomatous eye changes. Access Microbiology, 2020, 2, .	0.2	0
12	Genetic diversity of urogenital Chlamydia trachomatis before and after mass drug administration for trachoma. Access Microbiology, 2020, 2, .	0.2	0
13	Progression of scarring trachoma in Tanzanian children: A four-year cohort study. PLoS Neglected Tropical Diseases, 2019, 13, e0007638.	1.3	16
14	Ocular immune responses, Chlamydia trachomatis infection and clinical signs of trachoma before and after azithromycin mass drug administration in a treatment naÃ-ve trachoma-endemic Tanzanian community. PLoS Neglected Tropical Diseases, 2019, 13, e0007559.	1.3	11
15	Influenza Vaccination Primes Human Myeloid Cell Cytokine Secretion and NK Cell Function. Journal of Immunology, 2019, 203, 1609-1618.	0.4	19
16	Conjunctival Microbiome-Host Responses Are Associated With Impaired Epithelial Cell Health in Both Early and Late Stages of Trachoma. Frontiers in Cellular and Infection Microbiology, 2019, 9, 297.	1.8	14
17	Impact of a single round of mass drug administration with azithromycin on active trachoma and ocular Chlamydia trachomatis prevalence and circulating strains in The Gambia and Senegal. Parasites and Vectors, 2019, 12, 497.	1.0	10
18	Whole-genome sequencing of ocular Chlamydia trachomatis isolates from Gadarif State, Sudan. Parasites and Vectors, 2019, 12, 518.	1.0	11

#	Article	IF	CITATIONS
19	Population-based prevalence survey of follicular trachoma and trachomatous trichiasis in the Casamance region of Senegal. BMC Public Health, 2018, 18, 62.	1,2	8
20	Pathway-Wide Genetic Risks in Chlamydial Infections Overlap between Tissue Tropisms: A Genome-Wide Association Scan. Mediators of Inflammation, 2018, 2018, 1-9.	1.4	1
21	Conjunctival transcriptome profiling of Solomon Islanders with active trachoma in the absence of Chlamydia trachomatis infection. Parasites and Vectors, 2018, 11, 104.	1.0	5
22	Population-based analysis of ocular Chlamydia trachomatis in trachoma-endemic West African communities identifies genomic markers of disease severity. Genome Medicine, 2018, 10, 15.	3.6	18
23	Evaluation of a Chlamydia trachomatis-specific, commercial, real-time PCR for use with ocular swabs. Parasites and Vectors, 2018, 11, 102.	1.0	10
24	Reduced-cost Chlamydia trachomatis -specific multiplex real-time PCR diagnostic assay evaluated for ocular swabs and use by trachoma research programmes. Journal of Microbiological Methods, 2017, 139, 95-102.	0.7	22
25	Spatial clustering of high load ocular Chlamydia trachomatis infection in trachoma: a cross-sectional population-based study. Pathogens and Disease, 2017, 75, .	0.8	25
26	Genome-wide profiling of humoral immunity and pathogen genes under selection identifies immune evasion tactics of Chlamydia trachomatis during ocular infection. Scientific Reports, 2017, 7, 9634.	1.6	12
27	Short-term increase in prevalence of nasopharyngeal carriage of macrolide-resistant Staphylococcus aureus following mass drug administration with azithromycin for trachoma control. BMC Microbiology, 2017, 17, 75.	1.3	29
28	Profiling and validation of individual and patterns of Chlamydia trachomatis-specific antibody responses in trachomatous trichiasis. Parasites and Vectors, 2017, 10, 143.	1.0	3
29	Persistence of Innate Immune Pathways in Late Stage Human Bacterial and Fungal Keratitis: Results from a Comparative Transcriptome Analysis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 193.	1.8	35
30	Immunofibrogenic Gene Expression Patterns in Tanzanian Children with Ocular Chlamydia trachomatis Infection, Active Trachoma and Scarring: Baseline Results of a 4-Year Longitudinal Study. Frontiers in Cellular and Infection Microbiology, 2017, 7, 406.	1.8	19
31	miRNAs that associate with conjunctival inflammation and ocular Chlamydia trachomatis infection do not predict progressive disease. Pathogens and Disease, 2017, 75, .	0.8	8
32	Defining Seropositivity Thresholds for Use in Trachoma Elimination Studies. PLoS Neglected Tropical Diseases, 2017, 11, e0005230.	1.3	62
33	The impact of a single round of community mass treatment with azithromycin on disease severity and ocular Chlamydia trachomatis load in treatment-naĀ ve trachoma-endemic island communities in West Africa. Parasites and Vectors, 2017, 10, 624.	1.0	14
34	An outbreak of acute haemorrhagic conjunctivitis associated with coxsackievirus A24 variant in The Gambia, West Africa. BMC Research Notes, 2017, 10, 692.	0.6	13
35	Active Trachoma Cases in the Solomon Islands Have Varied Polymicrobial Community Structures but Do Not Associate with Individual Non-Chlamydial Pathogens of the Eye. Frontiers in Medicine, 2017, 4, 251.	1.2	20
36	Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination. Frontiers in Cellular and Infection Microbiology, 2016, 6, 72.	1.8	23

#	Article	IF	Citations
37	Increased Epithelial Expression of CTGF and S100A7 with Elevated Subepithelial Expression of IL- $1\hat{1}^2$ in Trachomatous Trichiasis. PLoS Neglected Tropical Diseases, 2016, 10, e0004752.	1.3	11
38	The Relationship between Active Trachoma and Ocular Chlamydia trachomatis Infection before and after Mass Antibiotic Treatment. PLoS Neglected Tropical Diseases, 2016, 10, e0005080.	1.3	60
39	Differential frequency of NKG2C/KLRC2 deletion in distinct African populations and susceptibility to Trachoma: a new method for imputation of KLRC2 genotypes from SNP genotyping data. Human Genetics, 2016, 135, 939-951.	1.8	21
40	Can corneal pannus with trachomatous inflammation $\hat{a} \in ``follicular be used in combination as an improved specific clinical sign for current ocular Chlamydia trachomatis infection?. Parasites and Vectors, 2016, 9, 30.$	1.0	7
41	Ocular chlamydial genomic variants and disease severity in trachoma: a cross-sectional population-based genome-wide association study. Lancet, The, 2016, 387, S63.	6.3	O
42	Immunohistochemical Analysis of Scarring Trachoma Indicates Infiltration by Natural Killer and Undefined CD45 Negative Cells. PLoS Neglected Tropical Diseases, 2016, 10, e0004734.	1.3	14
43	Blinding Trachoma: Systematic Review of Rates and Risk Factors for Progressive Disease. PLoS Neglected Tropical Diseases, 2016, 10, e0004859.	1.3	46
44	Conjunctival fibrosis and the innate barriers to Chlamydia trachomatis intracellular infection: a genome wide association study. Scientific Reports, 2015, 5, 17447.	1.6	11
45	Inverse relationship between microRNA-155 and -184 expression with increasing conjunctival inflammation during ocular Chlamydia trachomatis infection. BMC Infectious Diseases, 2015, 16, 60.	1.3	41
46	Intramuscular Immunisation with Chlamydial Proteins Induces Chlamydia trachomatis Specific Ocular Antibodies. PLoS ONE, 2015, 10, e0141209.	1.1	20
47	Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators of Inflammation, 2015, 2015, 1-22.	1.4	22
48	Pathogenesis of Progressive Scarring Trachoma in Ethiopia and Tanzania and Its Implications for Disease Control: Two Cohort Studies. PLoS Neglected Tropical Diseases, 2015, 9, e0003763.	1.3	52
49	Serology for Trachoma Surveillance after Cessation of Mass Drug Administration. PLoS Neglected Tropical Diseases, 2015, 9, e0003555.	1.3	73
50	Costs of Testing for Ocular Chlamydia trachomatis Infection Compared to Mass Drug Administration for Trachoma in The Gambia: Application of Results from the PRET Study. PLoS Neglected Tropical Diseases, 2015, 9, e0003670.	1.3	18
51	Anthropometric indices of Gambian children after one or three annual rounds of mass drug administration with azithromycin for trachoma control. BMC Public Health, 2014, 14, 1176.	1.2	14
52	The conjunctival microbiome in health and trachomatous disease: a case control study. Genome Medicine, 2014, 6, 99.	3.6	144
53	Whole-genome enrichment and sequencing of Chlamydia trachomatisdirectly from clinical samples. BMC Infectious Diseases, 2014, 14, 591.	1.3	71
54	Conjunctival Scarring in Trachoma Is Associated with the HLA-C Ligand of KIR and Is Exacerbated by Heterozygosity at KIR2DL2/KIR2DL3. PLoS Neglected Tropical Diseases, 2014, 8, e2744.	1.3	19

#	Article	IF	CITATIONS
55	Non-Participation during Azithromycin Mass Treatment for Trachoma in The Gambia: Heterogeneity and Risk Factors. PLoS Neglected Tropical Diseases, 2014, 8, e3098.	1.3	8
56	Mass administration of azithromycin and <i>Streptococcus pneumoniae </i> carriage: cross-sectional surveys in the Gambia. Bulletin of the World Health Organization, 2014, 92, 490-498.	1.5	26
57	Risk Factors for Active Trachoma and Ocular Chlamydia trachomatis Infection in Treatment-Na $\tilde{\mathbb{A}}$ -ve Trachoma-Hyperendemic Communities of the Bijag $\tilde{\mathbb{A}}$ 3s Archipelago, Guinea Bissau. PLoS Neglected Tropical Diseases, 2014, 8, e2900.	1.3	67
58	Plasmid Copy Number and Disease Severity in Naturally Occurring Ocular Chlamydia trachomatis Infection. Journal of Clinical Microbiology, 2014, 52, 324-327.	1.8	32
59	Effect of azithromycin mass drug administration for trachoma on spleen rates in <scp>G</scp> ambian children. Tropical Medicine and International Health, 2014, 19, 207-211.	1.0	10
60	Killer-cell Immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR. Genome Medicine, 2014, 6, 20.	3.6	37
61	Will droplet digital PCR become the test of choice for detecting and quantifying ocular (i) Chlamydia trachomatis (i) infection? Maybe. Expert Review of Molecular Diagnostics, 2014, 14, 253-256.	1.5	5
62	Towards a safe and effective chlamydial vaccine: Lessons from the eye. Vaccine, 2014, 32, 1572-1578.	1.7	53
63	Biogeography of the ecosystems of the healthy human body. Genome Biology, 2013, 14, R1.	13.9	540
64	Development and Evaluation of a Next-Generation Digital PCR Diagnostic Assay for Ocular Chlamydia trachomatis Infections. Journal of Clinical Microbiology, 2013, 51, 2195-2203.	1.8	97
65	Eyescores: an open platform for secure electronic data and photographic evidence collection in ophthalmological field studies. British Journal of Ophthalmology, 2013, 97, 671-672.	2.1	4
66	In vivo confocal microscopy and histopathology of the conjunctiva in trachomatous scarring and normal tissue: a systematic comparison. British Journal of Ophthalmology, 2013, 97, 1333-1337.	2.1	15
67	Trachoma: Protective and Pathogenic Ocular Immune Responses to Chlamydia trachomatis. PLoS Neglected Tropical Diseases, 2013, 7, e2020.	1.3	111
68	Mass Treatment with Azithromycin for Trachoma: When Is One Round Enough? Results from the PRET Trial in The Gambia. PLoS Neglected Tropical Diseases, 2013, 7, e2115.	1.3	57
69	Association between Ocular Bacterial Carriage and Follicular Trachoma Following Mass Azithromycin Distribution in The Gambia. PLoS Neglected Tropical Diseases, 2013, 7, e2347.	1.3	37
70	Conjunctival MicroRNA Expression in Inflammatory Trachomatous Scarring. PLoS Neglected Tropical Diseases, 2013, 7, e2117.	1.3	44
71	Post-Operative Recurrent Trachomatous Trichiasis Is Associated with Increased Conjunctival Expression of S100A7 (Psoriasin). PLoS Neglected Tropical Diseases, 2012, 6, e1985.	1.3	20
72	A Diagnostics Platform for the Integrated Mapping, Monitoring, and Surveillance of Neglected Tropical Diseases: Rationale and Target Product Profiles. PLoS Neglected Tropical Diseases, 2012, 6, e1746.	1.3	81

#	Article	IF	CITATIONS
73	Innate Immune Responses and Modified Extracellular Matrix Regulation Characterize Bacterial Infection and Cellular/Connective Tissue Changes in Scarring Trachoma. Infection and Immunity, 2012, 80, 121-130.	1.0	35
74	Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nature Genetics, 2012, 44, 413-419.	9.4	279
75	Genome-Wide Identification of <i>Chlamydia trachomatis </i> I>Antigens Associated with Trachomatous Trichiasis., 2012, 53, 2551.		26
76	Systemic effector and regulatory immune responses to chlamydial antigens in trachomatous trichiasis. Frontiers in Microbiology, 2011, 2, 10.	1.5	18
77	Diagnostic Accuracy of a Prototype Point-of-Care Test for Ocular Chlamydia trachomatis under Field Conditions in The Gambia and Senegal. PLoS Neglected Tropical Diseases, 2011, 5, e1234.	1.3	20
78	Conjunctival Transcriptome in Scarring Trachoma. Infection and Immunity, 2011, 79, 499-511.	1.0	59
79	Active Trachoma Is Associated with Increased Conjunctival Expression of <i>IL17A</i> and Profibrotic Cytokines. Infection and Immunity, 2011, 79, 4977-4983.	1.0	44
80	Design and Baseline Data of a Randomized Trial to Evaluate Coverage and Frequency of Mass Treatment with Azithromycin: The Partnership for Rapid Elimination of Trachoma (PRET) in Tanzania and The Gambia. Ophthalmic Epidemiology, 2011, 18, 20-29.	0.8	74
81	Haptoglobin and Sickle Cell Polymorphisms and Risk of Active Trachoma in Gambian Children. PLoS ONE, 2010, 5, e11075.	1.1	9
82	Conjunctival Expression of Matrix Metalloproteinase and Proinflammatory Cytokine Genes after Trichiasis Surgery., 2010, 51, 3583.		35
83	Pathway-Focused Arrays Reveal Increased Matrix Metalloproteinase-7 (Matrilysin) Transcription in Trachomatous Trichiasis., 2010, 51, 3893.		26
84	Human Conjunctival Transcriptome Analysis Reveals the Prominence of Innate Defense in <i>Chlamydia trachomatis </i> Infection. Infection and Immunity, 2010, 78, 4895-4911.	1.0	58
85	Phylogenetic Analysis of <i>Chlamydia trachomatis </i> Infection and Immunity, 2010, 78, 3678-3688.	1.0	70
86	Trichiasis Surgery in The Gambia: A 4-Year Prospective Study. , 2010, 51, 4996.		34
87	Trachoma Prevalence and Associated Risk Factors in The Gambia and Tanzania: Baseline Results of a Cluster Randomised Controlled Trial. PLoS Neglected Tropical Diseases, 2010, 4, e861.	1.3	73
88	Profound and Sustained Reduction in Chlamydia trachomatis in The Gambia: A Five-Year Longitudinal Study of Trachoma Endemic Communities. PLoS Neglected Tropical Diseases, 2010, 4, e835.	1.3	56
89	Estimating Household and Community Transmission of Ocular Chlamydia trachomatis. PLoS Neglected Tropical Diseases, 2009, 3, e401.	1.3	42
90	When Can Antibiotic Treatments for Trachoma Be Discontinued? Graduating Communities in Three African Countries. PLoS Neglected Tropical Diseases, 2009, 3, e458.	1.3	29

#	Article	IF	Citations
91	Active Trachoma and Ocular Chlamydia trachomatis Infection in Two Gambian Regions: On Course for Elimination by 2020?. PLoS Neglected Tropical Diseases, 2009, 3, e573.	1.3	50
92	Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain. BMC Genomics, 2009, 10, 239.	1.2	119
93	Innate immunity in ocular Chlamydia trachomatis infection: contribution of IL8 and CSF2 gene variants to risk of trachomatous scarring in Gambians. BMC Medical Genetics, 2009, 10, 138.	2.1	23
94	Revealing the History of Sheep Domestication Using Retrovirus Integrations. Science, 2009, 324, 532-536.	6.0	402
95	A chlamydial type III-secreted effector protein (Tarp) is predominantly recognized by antibodies from humans infected with Chlamydia trachomatis and induces protective immunity against upper genital tract pathologies in mice. Vaccine, 2009, 27, 2967-2980.	1.7	49
96	The Development of an Age-Structured Model for Trachoma Transmission Dynamics, Pathogenesis and Control. PLoS Neglected Tropical Diseases, 2009, 3, e462.	1.3	89
97	Analysis of flow cytometry data using an automatic processing tool. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 857-867.	1.1	16
98	Pathogenic Diversity among <i>Chlamydia trachomatis </i> Ocular Strains in Nonhuman Primates Is Affected by Subtle Genomic Variations. Journal of Infectious Diseases, 2008, 197, 449-456.	1.9	115
99	Susceptibility to sequelae of human ocular chlamydial infection associated with allelic variation in IL10 cis-regulation. Human Molecular Genetics, 2008, 17, 323-329.	1.4	38
100	Two Doses of Azithromycin to Eliminate Trachoma in a Tanzanian Community. New England Journal of Medicine, 2008, 358, 1870-1871.	13.9	75
101	Chlamydia trachomatis ompA Variants in Trachoma: What Do They Tell Us?. PLoS Neglected Tropical Diseases, 2008, 2, e306.	1.3	30
102	Genetic variation at the TNF locus and the risk of severe sequelae of ocular Chlamydia trachomatis infection in Gambians. Genes and Immunity, 2007, 8, 288-295.	2.2	53
103	<i>FOXP3</i> gene expression in a tuberculosis case contact study. Clinical and Experimental Immunology, 2007, 149, 117-122.	1.1	43
104	Chlamydial Positivity of Nasal Discharge at Baseline Is Associated with Ocular Chlamydial Positivity 2 Months following Azithromycin Treatment., 2006, 47, 4767.		20
105	A coding polymorphism in matrix metalloproteinase 9 reduces risk of scarring sequelae of ocular Chlamydia trachomatisinfection. BMC Medical Genetics, 2006, 7, 40.	2.1	54
106	Conjunctival FOXP3 Expression in Trachoma: Do Regulatory T Cells Have a Role in Human Ocular Chlamydia trachomatis Infection?. PLoS Medicine, 2006, 3, e266.	3.9	58
107	Conjunctival Chlamydial 16S Ribosomal RNA Expression in Trachoma: Is Chlamydial Metabolic Activity Required for Disease to Develop?. Clinical Infectious Diseases, 2006, 42, 463-470.	2.9	29
108	The Frequency of Chlamydia trachomatis Major Outer Membrane Protein-Specific CD8+ T Lymphocytes in Active Trachoma Is Associated with Current Ocular Infection. Infection and Immunity, 2006, 74, 1565-1572.	1.0	16

#	Article	IF	Citations
109	Th2 induction by Nippostrongylus secreted antigens in mice deficient in B cells, eosinophils or MHC Class I-related receptors. Immunology Letters, 2005, 96, 93-101.	1.1	23
110	Temporal cytokine gene expression patterns in subjects with trachoma identify distinct conjunctival responses associated with infection. Clinical and Experimental Immunology, 2005, 142, 347-353.	1.1	36
111	Risk of trachomatous scarring and trichiasis in Gambians varies with SNP haplotypes at the interferon-gamma and interleukin-10 loci. Genes and Immunity, 2005, 6, 332-340.	2.2	65
112	Mass Treatment and the Effect on the Load of Chlamydia trachomatis Infection in a Trachoma-Hyperendemic Community., 2005, 46, 83.		90
113	Re-emergence of Chlamydia trachomatis infection after mass antibiotic treatment of a trachoma-endemic Gambian community: a longitudinal study. Lancet, The, 2005, 365, 1321-1328.	6.3	134
114	Infection with Chlamydia trachomatis after mass treatment of a trachoma hyperendemic community in Tanzania: a longitudinal study. Lancet, The, 2005, 366, 1296-1300.	6.3	132
115	Detection, quantification and genotyping of Herpes Simplex Virus in cervicovaginal secretions by real-time PCR: a cross sectional survey. Virology Journal, 2005, 2, 61.	1.4	20
116	Cytokine and Fibrogenic Gene Expression in the Conjunctivas of Subjects from a Gambian Community Where Trachoma Is Endemic. Infection and Immunity, 2004, 72, 7352-7356.	1.0	78
117	Mass Treatment with Single-Dose Azithromycin for Trachoma. New England Journal of Medicine, 2004, 351, 1962-1971.	13.9	257
118	Selective maturation of dendritic cells byNippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. European Journal of Immunology, 2004, 34, 3047-3059.	1.6	156
119	Cytokine expression and regulation in skin lesions of leprosy patients in type 1 reactions. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2003, 97, 625.	0.7	0
120	Plasmodium falciparum infection of the placenta affects newborn immune responses. Clinical and Experimental Immunology, 2003, 133, 414-421.	1.1	50
121	Strategies for control of trachoma: observational study with quantitative PCR. Lancet, The, 2003, 362, 198-204.	6.3	216
122	Which Members of a Community Need Antibiotics to Control Trachoma? ConjunctivalChlamydia trachomatisInfection Load in Gambian Villages., 2003, 44, 4215.		124
123	Proteins secreted by the parasitic nematodeNippostrongylus brasiliensis act as adjuvants for Th2 responses. European Journal of Immunology, 2000, 30, 1977-1987.	1.6	131
124	Early Interleukinâ€"4: Its Role in the Switch towards a Th2 Response and IgEâ€"Mediated Allergy. International Archives of Allergy and Immunology, 1999, 119, 86-94.	0.9	75
125	Vaccination against helminth parasites - the ultimate challenge for vaccinologists?. Immunological Reviews, 1999, 171, 125-147.	2.8	77
126	Jaagsiekte Retrovirus Is Widely Distributed both in T and B Lymphocytes and in Mononuclear Phagocytes of Sheep with Naturally and Experimentally Acquired Pulmonary Adenomatosis. Journal of Virology, 1999, 73, 4004-4008.	1.5	65

#	Article	IF	CITATIONS
127	Parasite immunity: Pathways for expelling intestinal helminths. Current Biology, 1998, 8, R711-R714.	1.8	59
128	Antibody Response to the 60â€kDa Chlamydial Heatâ€Shock Protein Is Associated with Scarring Trachoma. Journal of Infectious Diseases, 1998, 177, 256-259.	1.9	85
129	Synthetic peptides based on Chlamydia trachomatis antigens identify cytotoxic T lymphocyte responses in subjects from a trachomaâ€endemic population. Clinical and Experimental Immunology, 1997, 107, 44-49.	1.1	29
130	T helper type-1 (Th1)/Th2 profiles of peripheral blood mononuclear cells (PBMC); responses to antigens of Chlamydia trachomatis in subjects with severe trachomatous scarring. Clinical and Experimental Immunology, 1996, 105, 429-436.	1,1	131
131	HLA Class I and II Polymorphisms and Trachomatous Scarring in a Chlamydia trachomatis-Endemic Population. Journal of Infectious Diseases, 1996, 174, 643-646.	1.9	69
132	Chlamydia pneumoniae and atherosclerosis. Lancet, The, 1993, 341, 825.	6.3	32
133	Conjunctival Scarring in Trachoma Is Associated with Depressed Cell-Mediated Immune Responses to Chlamydial Antigens. Journal of Infectious Diseases, 1993, 168, 1528-1531.	1.9	133
134	Experimental Autoimmune Glomerulonephritis Induced by Homologous and Isologous Glomerular Basement Membrane in Brown-Norway Rats. Nephrology Dialysis Transplantation, 1991, 6, 457-465.	0.4	26
135	The conjunctival transcriptome in Ethiopians after trichiasis surgery: associations with the development of eyelid contour abnormalities and the effect of oral doxycycline treatment. Wellcome Open Research, 0, 4, 130.	0.9	1