
Naureen Ghafoor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5185653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving thermal stability of hard coating films via a concept of multicomponent alloying. Applied Physics Letters, 2011, 99, .	3.3	95
2	Layer formation by resputtering in Ti–Si–C hard coatings during large scale cathodic arc deposition. Surface and Coatings Technology, 2011, 205, 3923-3930.	4.8	83
3	Cluster formation at the Si/liquid interface in Sr and Na modified Al–Si alloys. Scripta Materialia, 2016, 117, 16-19.	5.2	74
4	Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance. Thin Solid Films, 2013, 534, 394-402.	1.8	59
5	Comparison of segregations formed in unmodified and Sr-modified Al–Si alloys studied by atom probe tomography and transmission electron microscopy. Journal of Alloys and Compounds, 2014, 611, 410-421.	5.5	59
6	Tuning hardness and fracture resistance of ZrN/Zr0.63Al0.37N nanoscale multilayers by stress-induced transformation toughening. Acta Materialia, 2015, 89, 22-31.	7.9	57
7	Decomposition and phase transformation in TiCrAlN thin coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	44
8	Growth and thermal stability of TiN/ZrAlN: Effect of internal interfaces. Acta Materialia, 2016, 121, 396-406.	7.9	44
9	Interface engineering of short-period Ni/V multilayer X-ray mirrors. Thin Solid Films, 2006, 500, 84-95.	1.8	36
10	Atomic scale interface engineering by modulated ion-assisted deposition applied to soft x-ray multilayer optics. Applied Optics, 2008, 47, 4196.	2.1	36
11	Nanolabyrinthine ZrAIN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases. APL Materials, 2013, 1, .	5.1	35
12	Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS. Surface and Coatings Technology, 2020, 404, 126537.	4.8	33
13	Structure, deformation and fracture of arc evaporated Zr–Si–N hard films. Surface and Coatings Technology, 2014, 258, 1100-1107.	4.8	31
14	Adhesive-deformation relationships and mechanical properties of nc-AlCrN/a-SiNx hard coatings deposited at different bias voltages. Thin Solid Films, 2018, 650, 11-19.	1.8	31
15	Incorporation of nitrogen in Crâ^•Sc multilayers giving improved soft x-ray reflectivity. Applied Physics Letters, 2008, 92, .	3.3	29
16	Self-organized anisotropic (Zr1â^'Si)N nanocomposites grown by reactive sputter deposition. Acta Materialia, 2015, 82, 179-189.	7.9	27
17	Exploring the high entropy alloy concept in (AlTiVNbCr)N. Thin Solid Films, 2017, 636, 346-352.	1.8	27
18	Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	26

NAUREEN GHAFOOR

#	Article	IF	CITATIONS
19	Eutectic modification by ternary compound cluster formation in Al-Si alloys. Scientific Reports, 2019, 9, 5506.	3.3	26
20	Thermal stability of wurtzite Zr1â^'xAlxN coatings studied by <i>in situ</i> high-energy x-ray diffraction during annealing. Journal of Applied Physics, 2015, 118, .	2.5	20
21	Characterization of worn Ti–Si cathodes used for reactive cathodic arc evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 347-353.	2.1	19
22	Ti–Si–C–N thin films grown by reactive arc evaporation from Ti ₃ SiC ₂ cathodes. Journal of Materials Research, 2011, 26, 874-881.	2.6	19
23	3D Microstructure Characterization and Analysis of Al-Si Foundry Alloys at Different Length Scales. Microscopy and Microanalysis, 2014, 20, 956-957.	0.4	19
24	Interface engineered ultrashort period Cr-Ti multilayers as high reflectance mirrors and polarizers for soft x rays of lambda = 274 nm wavelength. Applied Optics, 2006, 45, 137.	2.1	18
25	Reflectivity and structural evolution of Cr/Sc and nitrogen containing Cr/Sc multilayers during thermal annealing. Journal of Applied Physics, 2008, 104, .	2.5	18
26	Single crystal CrN/ScN superlattice soft X-ray mirrors: Epitaxial growth, structure, and properties. Thin Solid Films, 2006, 514, 10-19.	1.8	16
27	Arc deposition of Ti–Si–C–N thin films from binary and ternary cathodes — Comparing sources of C. Surface and Coatings Technology, 2012, 213, 145-154.	4.8	15
28	Impact of B_4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors. Optics Express, 2017, 25, 18274.	3.4	15
29	High temperature phase decomposition in TixZryAlzN. AIP Advances, 2014, 4, .	1.3	13
30	Effects of ion-assisted growth on the layer definition in Cr/Sc multilayers. Thin Solid Films, 2008, 516, 982-990.	1.8	12
31	Auto-organizing ZrAlN/ZrAlTiN/TiN multilayers. Thin Solid Films, 2012, 520, 6451-6454.	1.8	11
32	Self-organization during growth of ZrN/SiNx multilayers by epitaxial lateral overgrowth. Journal of Applied Physics, 2013, 114, 224302.	2.5	11
33	Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for <i>>in situ</i> > x-ray diffraction studies of thin film growth using high energy synchrotron radiation. Review of Scientific Instruments, 2015, 86, 095113.	1.3	11
34	Effects of O and N impurities on the nanostructural evolution during growth of Cr/Sc multilayers. Journal of Materials Research, 2009, 24, 79-95.	2.6	10
35	Microstructure evolution of Ti3SiC2 compound cathodes during reactive cathodic arc evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, 031601.	2.1	10
36	Coherency strain engineered decomposition of unstable multilayer alloys for improved thermal stability. Journal of Applied Physics, 2013, 114, .	2.5	10

NAUREEN GHAFOOR

#	Article	lF	CITATIONS
37	Anomalous epitaxial stability of (001) interfaces in ZrN/SiNx multilayers. APL Materials, 2014, 2, 046106.	5.1	10
38	Self-organized nanostructuring in Zr0.69Al0.31N thin films studied by atom probe tomography. Thin Solid Films, 2016, 615, 233-238.	1.8	10
39	Influence of microstructure and mechanical properties on the tribological behavior of reactive arc deposited Zr-Si-N coatings at room and high temperature. Surface and Coatings Technology, 2016, 304, 393-400.	4.8	10
40	Characterization of DLC coatings over nitrided stainless steel with and without nitriding pre-treatment using annealing cycles. Journal of Materials Research and Technology, 2019, 8, 1653-1662.	5.8	10
41	Effects of decomposition route and microstructure on h-AlN formation rate in TiCrAlN alloys. Journal of Alloys and Compounds, 2017, 691, 1024-1032.	5.5	9
42	Self-structuring in Zr1â^'xAlxN films as a function of composition and growth temperature. Scientific Reports, 2018, 8, 16327.	3.3	9
43	Rhombohedral boron nitride epitaxy on ZrB2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	7
44	Nanostructuring and coherency strain in multicomponent hard coatings. APL Materials, 2014, 2, 116104.	5.1	6
45	Decomposition routes and strain evolution in arc deposited TiZrAlN coatings. Journal of Alloys and Compounds, 2019, 779, 261-269. Interface bonding of Commission	5.5	6
46	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">Z<mml:msub><mml:mi mathvariant="normal">r<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^`</mml:mo><mml:mi>xmathvariant="normal">A</mml:mi><mml:msub><mml:mi< td=""><td>ıml:3::6> <td>nmbmrow></td></td></mml:mi<></mml:msub></mml:mrow></mml:mi </mml:msub></mml:mi </mml:mrow>	ım l:3::6 > <td>nmbmrow></td>	nm b mrow>
47	mathvariant="normal">l<x <mml:mi Phase evolution corradio frequency magnetron sputtered Cr-rich (Cr,Zr)2O3 coatings studied by in situ synchrotron X-ray diffraction during annealing in air or vacuum. Journal of Materials Research, 2019, 34, 3735-3746.</mml:mi 	2.6	2
48	Ion-assisted magnetron sputter deposition of B4C-doped Ni/Ti multilayer mirrors. , 2018, , .		1
49	Novel Fabrication Technology for Clamped Micron-Thick Titanium Diaphragms Used for the Packaging of an Implantable MEMS Acoustic Transducer. Micromachines, 2022, 13, 74.	2.9	1
50	Carbon Based Coatings Deposited on Nitrided Stainless Steel: Study of Thermal Degradation. Minerals, Metals and Materials Series, 2017, , 57-66.	0.4	0