
Katsura Tsukamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5185065/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Lag Time for New Innovative, First-in-Class, Drug Approval in Japan. Biological and Pharmaceutical Bulletin, 2022, 45, 477-482.	0.6	6
2	Impact of expedited programs in the United States, as foreign regulatory factors, on clinical development time in Japan. Journal of Clinical Pharmacy and Therapeutics, 2022, , .	0.7	0
3	Clinical development of anticancer drugs can be enhanced using efficacy data of small population clinical trials. Journal of Clinical Pharmacy and Therapeutics, 2022, , .	0.7	0
4	Alternative New Mono-scaled Quantitative Benefit–Risk Assessment of Human Papillomavirus Vaccine in Japan. Therapeutic Innovation and Regulatory Science, 2021, 55, 48-55.	0.8	0
5	Burden of caring for Alzheimer's disease or dementia patients in Japan, the US, and EU: results from the National Health and Wellness Survey: a cross-sectional survey. Journal of Medical Economics, 2021, 24, 266-278.	1.0	10
6	Humanistic burden among caregivers of patients with Alzheimer's disease or dementia in Japan: a large-scale cross-sectional survey. Journal of Medical Economics, 2021, 24, 181-192.	1.0	12
7	Characteristics of drugs approved in Japan without conducting confirmatory clinical trials. Journal of Clinical Pharmacy and Therapeutics, 2021, 46, 1582-1590.	0.7	0
8	Humanistic and economic burden among caregivers of patients with cancer in Japan. Journal of Medical Economics, 2020, 23, 17-27.	1.0	11
9	Factors associated with humanistic burden and indirect cost among patients with cancer in Japan. Journal of Medical Economics, 2020, 23, 1570-1578.	1.0	2
10	A population-based study of the humanistic burden among cancer patients in Japan. Journal of Medical Economics, 2020, 23, 429-441.	1.0	2
11	The drug lag and associated factors for orphan anticancer drugs in Japan compared to the United States. Investigational New Drugs, 2019, 37, 1086-1093.	1.2	18
12	Influence of Expedited Programs in the United States on Oncology Drug Development in Japan. Therapeutic Innovation and Regulatory Science, 2019, 53, 199-206.	0.8	6
13	Safety-Related Regulatory Actions and Risk Factors for Anticancer Drugs in Japan. Pharmaceutical Medicine, 2019, 33, 45-52.	1.0	0
14	Health Technology Assessment in Japan: A Pharmaceutical Industry Perspective. Therapeutic Innovation and Regulatory Science, 2019, 53, 472-480.	0.8	7
15	Future Perspectives for the Treatment of Diabetes: Importance of a Regulatory Framework. Therapeutic Innovation and Regulatory Science, 2019, 53, 535-541.	0.8	2
16	Unique characteristics of regulatory approval and pivotal studies of orphan anticancer drugs in Japan. Investigational New Drugs, 2018, 36, 702-708.	1.2	5
17	Identification of Drug Characteristics for Implementing Multiregional Clinical Trials Including Japan. Clinical Therapeutics, 2018, 40, 284-295.	1.1	6
18	New quantitative method for evaluation of motor functions applicable to spinal muscular atrophy. Brain and Development, 2018, 40, 172-180.	0.6	0

KATSURA TSUKAMOTO

#	Article	IF	CITATIONS
19	Industry Perspective of Pediatric Drug Development in the United States: Involvement of the European Union Countries. Therapeutic Innovation and Regulatory Science, 2018, 52, 49-56.	0.8	4
20	Evaluation of the Microbiological Efficacy of a Single 2-Gram Dose of Extended-Release Azithromycin by Population Pharmacokinetics and Simulation in Japanese Patients with Gonococcal Urethritis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	15
21	Delays in New Drug Applications and Associated Factors for Orphan Anticancer Drugs in Japan Compared with the USA. Pharmaceutical Medicine, 2018, 32, 403-412.	1.0	0
22	Influence of Breakthrough Therapy Designation in the United States on Oncology Drug Development Timelines in Japan. Pharmaceutical Medicine, 2018, 32, 201-207.	1.0	3
23	Development of Novel Pharmaceutical Agents for Alzheimer's Disease: The Impact of Regulatory Initiatives in Japan and the United States. Clinical Therapeutics, 2015, 37, 1652-1660.	1.1	6
24	Embryonic Stem Cell Transplantation Correlates With Endogenous Neurogenin 3 Expression and Pancreas Regeneration in Streptozotocin-injured Mice. Journal of Histochemistry and Cytochemistry, 2009, 57, 1149-1158.	1.3	8
25	Glucose Activates a Protein Phosphatase-1-Mediated Signaling Pathway to Enhance Overall Translation in Pancreatic Î ² -Cells. Endocrinology, 2007, 148, 609-617.	1.4	75
26	Protection of pancreatic β-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. Journal of Endocrinology, 2007, 193, 65-74.	1.2	90
27	Probe-Independent and Direct Quantification of Insulin mRNA and Growth Hormone mRNA in Enriched Cell Preparations. Diabetes, 2006, 55, 3214-3220.	0.3	52
28	Growth Without Growth Hormone Receptor: Estradiol Is a Major Growth Hormone-Independent Regulator of Hepatic IGF-I Synthesis. Journal of Bone and Mineral Research, 2005, 20, 2138-2149.	3.1	76
29	Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nature Medicine, 2005, 11, 757-764.	15.2	369
30	Redox Control of Exocytosis: Regulatory Role of NADPH, Thioredoxin, and Glutaredoxin. Diabetes, 2005, 54, 2132-2142.	0.3	232
31	Gastroprokinetic Effect and Mechanism of SK-896, a New Motilin Analogue, during the Interdigestive Period in Conscious Dogs. Pharmacology, 2001, 63, 95-102.	0.9	7
32	Facilitation of Acetylcholine Release by SK-951, a Benzofuran Derivative, via the 5-Hydroxytryptamine4 Receptor in Guinea Pig Stomach. The Japanese Journal of Pharmacology, 2000, 82, 138-143.	1.2	1
33	The effect of SK-896 on post-operative ileus in dogs: gastrointestinal motility pattern and transit. European Journal of Pharmacology, 2000, 401, 97-107.	1.7	7
34	In vitro Pharmacological Profile of SK-896, a New Human Motilin Analogue. Pharmacology, 2000, 60, 128-135.	0.9	12
35	Effects of SK-951, a Benzofuran Derivative, as a Prokinetic Agent in Rats and Dogs The Japanese Journal of Pharmacology, 1999, 81, 292-297.	1.2	10
36	A 3D-Quantitative Structur-Activity Relationship Study of Benzamide Type Serotonin 5-HT4 Receptor Agonists Based on a Comparative Molecular Field Analysis Model, and the Design and Synthesis of Potent Agonists Chemical and Pharmaceutical Bulletin, 1998, 46, 1881-1886.	0.6	0

Serotonin 5-HT4 Receptor Agonistic Activity of the Optical Isomers of 37 (.+)-4-Amino-N-(2-(1-azabicyclo(3.3.0)octan-5-yl)ethyl)-5-chloro-2,3-dihydro-2-methylbenzo(b)furan-7-carboxamid@6 6 Chemical and Pharmaceutical Bulletin, 1998, 46, 1039-1043.	#	Article	CITATIONS
	37	(.+)-4-Amino-N-(2-(1-azabicyclo(3.3.0)octan-5-yl)ethyl)-5-chloro-2,3-dihydro-2-methylbenzo(b)furan-7-carboxamide0.6	6