
Christina Bade-Doeding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5184522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. Journal of Personalized Medicine, 2022, 12, 40.	2.5	2
2	Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects. Biomedicines, 2022, 10, 693.	3.2	1
3	Soluble HLA-G and HLA-G Bearing Extracellular Vesicles Affect ILT-2 Positive and ILT-2 Negative CD8 T Cells Complementary. Frontiers in Immunology, 2020, 11, 2046.	4.8	25
4	The Loss of HLA-F/KIR3DS1 Ligation Is Mediated by Hemoglobin Peptides. International Journal of Molecular Sciences, 2020, 21, 8012.	4.1	4
5	NKG2A/CD94 Is a New Immune Receptor for HLA-G and Distinguishes Amino Acid Differences in the HLA-G Heavy Chain. International Journal of Molecular Sciences, 2020, 21, 4362.	4.1	25
6	Vesicular-Bound HLA-G as a Predictive Marker for Disease Progression in Epithelial Ovarian Cancer. Cancers, 2019, 11, 1106.	3.7	30
7	The microstructure in the placenta is influenced by the functional diversity of HLA-G allelic variants. Immunogenetics, 2019, 71, 455-463.	2.4	11
8	Battle between Host Immune Cellular Responses and HCMV Immune Evasion. International Journal of Molecular Sciences, 2019, 20, 3626.	4.1	33
9	Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. , 2019, , .		5
10	The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity. Pharmaceutics, 2019, 11, 536.	4.5	12
11	Releasing the concept of HLAâ€allele specific peptide anchors in viral infections: A nonâ€canonical naturally presented human cytomegalovirusâ€derived HLAâ€A*24:02 restricted peptide drives exquisite immunogenicit y. Hla, 2019, 94, 25-38.	0.6	2
12	HLA-F*01:01 presents peptides with N-terminal flexibility and a preferred length of 16 residues. Immunogenetics, 2019, 71, 353-360.	2.4	13
13	Between Innate and Adaptive Immune Responses: NKG2A, NKG2C, and CD8+ T Cell Recognition of HLA-E Restricted Self-Peptides Acquired in the Absence of HLA-Ia. International Journal of Molecular Sciences, 2019, 20, 1454.	4.1	6
14	HLA-F Allele-Specific Peptide Restriction Represents an Exceptional Proteomic Footprint. International Journal of Molecular Sciences, 2019, 20, 5572.	4.1	5
15	HLA-G peptide preferences change in transformed cells: impact on the binding motif. Immunogenetics, 2018, 70, 485-494.	2.4	15
16	HLA-G mediated immune regulation is impaired by a single amino acid exchange in the alpha 2 domain. Human Immunology, 2018, 79, 453-462.	2.4	47
17	Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo>â^—</mml:mo>15:02. lournal of Immunology Research, 2018, 2018, 1-12.</mml:math 	2.2	19
18	The polymorphism at residue 156 determines the HLA-B*35 restricted peptide repertoire during HCMV infection. Immunogenetics, 2018, 70, 639-646.	2.4	2

4

#	Article	IF	CITATIONS
19	Peptide Presentation Is the Key to Immunotherapeutical Success. , 2018, , .		2
20	Understanding the obstacle of incompatibility at residue 156 within HLA-B*35 subtypes. Immunogenetics, 2016, 68, 247-260.	2.4	8
21	The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Gly mismatch. Immunogenetics, 2016, 68, 29-41.	2.4	65
22	HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response—Implications on HSCT Outcome. Stem Cells International, 2015, 2015, 1-12.	2.5	50
23	HLA-E: A Novel Player for Histocompatibility. Journal of Immunology Research, 2014, 2014, 1-7.	2.2	45
24	Soluble HLA Technology as a Strategy to Evaluate the Impact of HLA Mismatches. Journal of Immunology Research, 2014, 2014, 1-8.	2.2	19
25	A Micropolymorphism Altering the Residue Triad 97/114/156 Determines the Relative Levels of Tapasin Independence and Distinct Peptide Profiles for HLA-A*24 Allotypes. Journal of Immunology Research, 2014, 2014, 1-12.	2.2	14
26	Autocrine GM-CSF transcription in the leukemic progenitor cell line KG1a is mediated by the transcription factor ETS1 and is negatively regulated through SECTM1 mediated ligation of CD7. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1004-1013.	2.4	4
27	Position 156 influences the peptide repertoire and tapasin dependency of human leukocyte antigen B*44 allotypes. Haematologica, 2012, 97, 98-106.	3.5	31
28	Residue 81 confers a restricted C-terminal peptide binding motif in HLA-B*44:09. Immunogenetics, 2012, 64, 663-668.	2.4	10
29	Position 45 influences the peptide binding motif of HLA-B*44:08. Immunogenetics, 2012, 64, 245-249.	2.4	12
30	Mismatches outside exons 2 and 3 do not alter the peptide motif of the allele group B*44:02P. Human Immunology, 2011, 72, 1039-1044.	2.4	26
31	The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family. Haematologica, 2011, 96, 110-118.	3.5	42
32	The nature of peptides presented by an HLA class I low expression allele. Haematologica, 2010, 95, 1373-1380.	3.5	11
33	Amino acid 95 causes strong alteration of peptide position \hat{PI} in HLA-B*41 variants. Immunogenetics, 2007, 59, 253-259.	2.4	25
34	Peptide-binding motif of HLA-A*6603. Immunogenetics, 2005, 56, 769-772.	2.4	8
35	A single amino-acid polymorphism in pocket�A of HLA-A*6602 alters the auxiliary anchors compared with HLA-A*6601 ligands. Immunogenetics, 2004, 56, 83-88.	2.4	23

Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens. , 0, , .

3

#	Article	IF	CITATIONS
37	Small Molecule/HLA Complexes Alter the Cellular Proteomic Content. , 0, , .		1