Pilar Lopez Cornejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5184387/publications.pdf

Version: 2024-02-01

361413 434195 1,319 91 20 31 citations h-index g-index papers 93 93 93 1169 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Supramolecular Systems for Gene and Drug Delivery. Pharmaceutics, 2022, 14, 471.	4.5	3
2	Fluorescent Calixarene-Schiff as a Nanovehicle with Biomedical Purposes. Chemosensors, 2022, 10, 281.	3.6	3
3	Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes. International Journal of Molecular Sciences, 2021, 22, 826.	4.1	10
4	Metallo-Liposomes Derived from the [Ru(bpy)3]2+ Complex as Nanocarriers of Therapeutic Agents. Chemosensors, 2021, 9, 90.	3.6	6
5	Cationic Single-Chained Surfactants with a Functional Group at the End of the Hydrophobic Tail DNA Compacting Efficiency. Pharmaceutics, 2021, 13, 589.	4.5	7
6	Multivalent Calixarene-Based Liposomes as Platforms for Gene and Drug Delivery. Pharmaceutics, 2021, 13, 1250.	4.5	21
7	Properties of polyplexes formed between a cationic polymer derived from l-arabinitol and nucleic acids. New Journal of Chemistry, 2021, 45, 10098-10108.	2.8	2
8	Influence of the surfactant degree of oligomerization on the formation of cyclodextrin: surfactant inclusion complexes. Arabian Journal of Chemistry, 2020, 13, 2318-2330.	4.9	6
9	Structure-property relationships of d-mannitol-based cationic poly(amide triazoles) and their self-assembling complexes with DNA. European Polymer Journal, 2020, 123, 109458.	5 . 4	4
10	Metallo-Liposomes of Ruthenium Used as Promising Vectors of Genetic Material. Pharmaceutics, 2020, 12, 482.	4.5	9
11	Synthesis of chiral iron-based ionic liquids: modelling stable hybrid materials. New Journal of Chemistry, 2020, 44, 6375-6383.	2.8	3
12	Self-aggregation in aqueous solution of amphiphilic cationic calix[4] arenes. Potential use as vectors and nanocarriers. Journal of Molecular Liquids, 2020, 304, 112724.	4.9	18
13	Influence of the degree of oligomerization of surfactants on the DNA/surfactant interaction. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110399.	5.0	5
14	Optimized Preparation of Levofloxacin Loaded Polymeric Nanoparticles. Pharmaceutics, 2019, 11, 57.	4.5	37
15	Assessment of the denaturation of collagen protein concentrates using different techniques. Biological Chemistry, 2019, 400, 1583-1591.	2.5	16
16	Preparation and Characterization of New Liposomes. Bactericidal Activity of Cefepime Encapsulated into Cationic Liposomes. Pharmaceutics, 2019, 11, 69.	4.5	47
17	Preparation and characterization of metallomicelles of Ru(II). Cytotoxic activity and use as vector. Colloids and Surfaces B: Biointerfaces, 2019, 175, 116-125.	5.0	13
18	Importance of hydrophobic interactions in the single-chained cationic surfactant-DNA complexation. Journal of Colloid and Interface Science, 2018, 521, 197-205.	9.4	43

#	Article	IF	CITATIONS
19	Influence of the cyclodextrin nature on the decompaction of dimeric cationic surfactant-DNA complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 133-141.	4.7	2
20	<i>P</i> â€Sulfocalix[6]arene as Nanocarrier for Controlled Delivery of Doxorubicin. Chemistry - an Asian Journal, 2017, 12, 679-689.	3.3	29
21	Stoppering/unstoppering of a rotaxane formed between an N-hetorycle ligand containing surfactant: \hat{l}^2 -cyclodextrin pseudorotaxane and pentacyanoferrate(II) ions. Journal of Colloid and Interface Science, 2017, 497, 343-349.	9.4	4
22	Host-guest interactions between cyclodextrins and surfactants with functional groups at the end of the hydrophobic tail. Journal of Colloid and Interface Science, 2017, 491, 336-348.	9.4	19
23	Binding and reactivity under restricted geometry conditions: Applicability of the Pseudophase Model to thermal and photochemical processes. Current Opinion in Colloid and Interface Science, 2017, 32, 23-28.	7.4	2
24	Study of ionic surfactants interactions with carboxylated single-walled carbon nanotubes by using ion-selective electrodes. Electrochemistry Communications, 2016, 67, 31-34.	4.7	15
25	Binding of 12-s-12 dimeric surfactants to calf thymus DNA: Evaluation of the spacer length influence. Colloids and Surfaces B: Biointerfaces, 2016, 144, 311-318.	5.0	16
26	Binding of DNA by a dinitro-diester calix[4]arene: Denaturation and condensation of DNA. Colloids and Surfaces B: Biointerfaces, 2015, 127, 65-72.	5.0	7
27	Fluorescence quenching of 1-pyrene-carboxaldehyde by iodide ions in the presence of anionic (SDS) and cationic (CTAC) micelles: a quantitative treatment. RSC Advances, 2015, 5, 46485-46492.	3.6	3
28	Cooperative interaction between metallosurfactants, derived from the [Ru(2,2′-bpy)3]2+ complex, and DNA. Colloids and Surfaces B: Biointerfaces, 2015, 135, 817-824.	5.0	20
29	Reversibility of the interactions between a novel surfactant derived from lysine and biomolecules. Colloids and Surfaces B: Biointerfaces, 2015, 135, 346-356.	5.0	10
30	A New Formulation for Quenching Processes under Restricted Geometry Conditions in the Slow Exchange Limit. Progress in Reaction Kinetics and Mechanism, 2014, 39, 151-170.	2.1	3
31	Conformational changes of DNA in the presence of 12-s-12 gemini surfactants (s=2 and 10). Role of the spacer's length in the interaction surfactant-polynucleotide. Colloids and Surfaces B: Biointerfaces, 2014, 118, 90-100.	5.0	18
32	Interaction between monomers of two surfactants derived from the $[Ru(2,2\hat{a}\in^2-bpy)3]2+$ complex and \hat{l}_+ , \hat{l}^2 and \hat{l}^3 -cyclodextrins: formation of $[2]$ - and $[3]$ -pseudorotaxanes. Dalton Transactions, 2013, 42, 6171.	3.3	9
33	Role of the spacer in the non ideal behavior of alkanedyil-α,ω-bis(dodecyldimethylammonium) bromide-MEGA10 binary mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418, 139-146.	4.7	5
34	On the applicability of the two state (pseudophase) model to photochemical reactions under restricted geometry conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 248, 36-41.	3.9	4
35	Compaction and Decompaction of DNA Induced by the Cationic Surfactant CTAB. Langmuir, 2012, 28, 10968-10979.	3.5	73
36	The Fluorophore 4′,6â€Diamidinoâ€2â€phenylindole (DAPI) Induces DNA Folding in Long Doubleâ€Stranded D Chemistry - an Asian Journal, 2012, 7, 1803-1810.)NA. 3:3	33

#	Article	IF	CITATIONS
37	The use of a kinetic process as sensor to determine DNA conformation changes in solution. Chemical Physics Letters, 2011, 511, 413-417.	2.6	4
38	Salt Effects on the Formation of the Rotaxane [Ru(NH3)5(4,4′-bpy)/β-CD/Fe(CN)5]â^². Journal of Solution Chemistry, 2011, 40, 1701-1710.	1.2	0
39	Photoinduced Electron-Transfer Reactions: A Study of the Diffusion-Controlled and Activation-Diffusion-Controlled Processes. Journal of Physical Chemistry A, 2010, 114, 7912-7917.	2.5	2
40	Kinetic study of the condensation of salicylaldehyde with diethyl malonate in a nonpolar solvent catalyzed by secondary amines. International Journal of Chemical Kinetics, 2009, 41, 589-598.	1.6	4
41	Abnormal salt effects on reactions between ions: The coupling of salt and solvent effects. International Journal of Chemical Kinetics, 2009, 41, 582-588.	1.6	1
42	Binding of Ru(NH ₃) ₅ pz ²⁺ to 4-Sulfocalix[4]arene Sodium Salt. Effects of the Hostâ-Guest Interaction on Electron Transfer Processes. Journal of Physical Chemistry B, 2009, 113, 12721-12726.	2.6	7
43	Cooperative and Noncooperative Binding of *Ru(bpy) ₃ ²⁺ to DNA and SB4.5G Dendrimers. Journal of Physical Chemistry B, 2009, 113, 9373-9378.	2.6	11
44	Study of water solubilized in AOT/n-decane/water microemulsions. Chemical Physics, 2008, 345, 65-72.	1.9	22
45	Ruthenium complexes of 3-hydroxy-4-pyranones and of 3-hydroxy-4-pyridinones. Transition Metal Chemistry, 2008, 33, 553-561.	1.4	2
46	Determination of Substrate/Ligand Binding Constants from Electromotrive Force Measurements. Journal of Solution Chemistry, 2008, 37, 519-526.	1,2	4
47	Quenching of two conformers of the naphthalene derivative, nabumetone, in water. Journal of Luminescence, 2008, 128, 1241-1247.	3.1	3
48	Micellar effects upon the forward and reverse processes corresponding to the reaction between acetonitrile pentacyanoferrate(II) and pentaamminepyrazineruthenium(II). Chemical Physics Letters, 2008, 451, 252-256.	2.6	1
49	Formation of a Rotaxane from the End-Capping Process of a Pseudorotaxane. Effects of the Solvent. Journal of Physical Chemistry B, 2008, 112, 11610-11615.	2.6	4
50	Rigidity and/or Flexibility of Calixarenes. Effect of the p-Sulfonatocalix[n]arenes (n = 4, 6, and 8) on the Electron Transfer Process $[Ru(NH3)5pz]2+ + Co(C2O4)33-$. Journal of Physical Chemistry B, 2007, 111, 10697-10702.	2.6	6
51	Effect of the structure and concentration of cyclodextrins in the quenching process of naproxen. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 5-11.	3.9	13
52	Estimation of the reorganization and reaction free energies for electron transfer processes from optical and thermal data. An application to the reaction [Fell(CN)5pzColll(NH3)5] â†' [FellI(CN)5pzColl(NH3)5]. New Journal of Chemistry, 2006, 30, 712-716.	2.8	0
53	Salt and Solvent Effects on the Kinetics of the Oxidation of the Excited State of the [Ru(bpy)3]2+Complex by S2O82 Journal of Physical Chemistry A, 2006, 110, 4196-4201.	2.5	12
54	Salt and Solvent Effects on the Kinetics and Thermodynamics of the Inclusion of the Ruthenium Complex [Ru(NH3)5(4,4â€⁻-bpy)]2+in β-Cyclodextrin. Journal of Physical Chemistry B, 2006, 110, 12959-12963.	2.6	10

#	Article	IF	CITATIONS
55	Method for the evaluation of the reorganization energy of electron transfer reactions in water–methanol mixtures. Chemical Physics Letters, 2005, 407, 342-346.	2.6	5
56	Method for the Evaluation of the Reorganization Energy of Electron Transfer Reactions Produced under Restricted Geometry Conditions. Journal of Physical Chemistry B, 2005, 109, 1703-1707.	2.6	14
57	Strength and Character of Peptide/Anion Interactions. Journal of Physical Chemistry B, 2005, 109, 19676-19680.	2.6	5
58	Micellar effects on a ligand substitution reaction: Kinetics of the formation of $[Fe(CN)5(\hat{1}/4-pz)Ru(NH3)5]\hat{a}^{\circ}$, from $[Fe(CN)5H2O]3\hat{a}^{\circ}$ and $[Ru(NH3)5pz]2+$, in the presence of anionic micelles. International Journal of Chemical Kinetics, 2004, 36, 627-633.	1.6	14
59	Effects of SB1.5G and SB4.5G dendrimers on the rate of the electron transfer reaction between [Ru(NH3)5pz]2+ and [Co(C2O4)3]3â~. Chemical Physics Letters, 2004, 398, 82-86.	2.6	13
60	Kinetic Study of the Oxidation of [Ru(NH3)5pz]2+by [Co(C2O4)3]3-in AOTâ^'Oilâ^'Water Microemulsions and in CTACl Micellar Solutions. Langmuir, 2004, 20, 1558-1563.	3.5	27
61	On the Equivalence of the Pseudophase Related Models and the Brönsted Approach in the Interpretation of Reactivity under Restricted Geometry Conditions. Progress in Reaction Kinetics and Mechanism, 2004, 29, 289-310.	2.1	20
62	Influence of the Charge and Concentration of Coreactants on the Apparent Binding Constant of the Reactant to Micelles. Langmuir, 2003, 19, 5991-5995.	3.5	11
63	Comparative Study of Micellar and DNA Effects on the Reaction [Ru(NH3)5py]2++ S2O82 Langmuir, 2003, 19, 3185-3189.	3.5	17
64	Use of the Pseudophase Model in the Interpretation of Reactivity under Restricted Geometry Conditions. An Application to the Study of the [Ru(NH3)5pz]2++ S2O82-Electron-Transfer Reaction in Different Microheterogeneous Systems. Journal of the American Chemical Society, 2002, 124, 5154-5164.	13.7	70
65	Kinetic study of the reaction *[Ru(bpy)3]2++S2O82â^' in solutions of Brij-35 at premicellar and micellar concentrations. Chemical Physics Letters, 2002, 352, 33-38.	2.6	30
66	Title is missing!. Transition Metal Chemistry, 2002, 27, 127-133.	1.4	2
67	Micellar Effects on the Kinetics of the Oxidation of the Excited State of the [Ru(bpy)3]2+ Complex by S2O82 A Comparison of Different Approaches for the Interpretation of Micellar Effects on Kinetics. Journal of Physical Chemistry B, 2001, 105, 10523-10527.	2.6	30
68	Photoinduced electron transfer in non-aqueous microemulsions. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 151-161.	3.9	19
69	Electron Transfer Reactions in Micellar Systems. Progress in Reaction Kinetics and Mechanism, 2000, 25, 371-407.	2.1	23
70	Title is missing!. Transition Metal Chemistry, 2000, 25, 674-679.	1.4	2
71	Influence of the Micellar Electric Field on Electron-Transfer Processes (II):Â A Study of the Ru(NH3)5pz2++ Co(C2O4)33-Reaction in SDS Micellar Solution Containing NaCl. Langmuir, 2000, 16, 7986-7990.	3.5	14
72	Kinetic study of the electron transfer process between Ru(NH3)5pz2+ and S2O82â ² in water–cosolvent mixtures: a new component of reorganization energy. Chemical Physics, 1999, 243, 159-168.	1.9	12

#	Article	IF	CITATIONS
73	Estimation of electron transfer rate constants by static (optical and electrochemical) measurements. Chemical Physics, 1999, 250, 321-334.	1.9	12
74	Salt effects upon the S2O82? + $Ru(NH3)5pz2$ + electron transfer reaction. International Journal of Chemical Kinetics, 1999, 31, 485-490.	1.6	7
75	Luminescence of Zinc Tetraphenylporphyrin in Ethylene Glycol-in-Oil Microemulsions. Langmuir, 1998, 14, 2042-2049.	3.5	39
76	On the Calculation of Transition State Activity Coefficient and Solvent Effects on Chemical Reactions. Collection of Czechoslovak Chemical Communications, 1998, 63, 1969-1976.	1.0	7
77	Dynamic Light Scattering Study of AOT Microemulsions with Nonaqueous Polar Additives in an Oil Continuous Phase. Langmuir, 1998, 14, 3531-3537.	3.5	75
78	A study of the electron-transfer reaction between Fe(CN)2(bpy)2 and S2O82- in solvent mixtures: the translational component of solvent reorganization. New Journal of Chemistry, 1998, 22, 39-44.	2.8	8
79	Effect of surfactant addition on the kinetics of the reaction Fe(bpy)32++S2O82 Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2181-2184.	1.7	14
80	Micellar, Microemulsion, and Salt Kinetic Effects upon the Reaction Fe(CN)2(bpy)2 + S2O82 Langmuir, 1997, 13, 3084-3089.	3.5	36
81	Study of the Reactions I-+ IrCl62-and Fe(CN)64-+ S2O82-in Micellar Solutions. Langmuir, 1997, 13, 187-191.	3.5	21
82	Use of the Brönsted Equation in the Interpretation of Micellar Effects in Kinetics. Langmuir, 1996, 12, 4981-4986.	3.5	48
83	Common basis for salt, micelle and microemulsion effects upon the ionic reaction of hexachloroiridate(IV) with thiosulfate. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3381-3384.	1.7	7
84	Solvent effects on the Co(NH3)4(pzCO2)2+–Fe(CN)64–reaction. An interpretation based on spectroscopic data. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1155-1162.	1.7	14
85	Specific interactions in reversed micelles: Oxidation of Fe(bpy)32+by S2O82â^in AOT-oil-water microemulsions. International Journal of Chemical Kinetics, 1995, 27, 525-534.	1.6	7
86	lonic strength effects in binary aqueous mixtures: Study of the reaction between Co(en)2(2-pzCO2)2+and Fe(CN)5H2O3â^. International Journal of Chemical Kinetics, 1995, 27, 807-815.	1.6	7
87	Oxidation of Fe(CN)4(bpy)2- by S202-8 in AOT-Oil-Water Microemulsions. Journal of Colloid and Interface Science, 1994, 166, 503-505.	9.4	7
88	Study of the Reaction Fe(CN)5(4-CNpy)3- + CN- in AOT-Oil-Water Microemulsions. Journal of Colloid and Interface Science, 1993, 159, 53-57.	9.4	6
89	Oxidation of Fe(CN)4–6 by S2O2–8 in AOT–oil–water microemulsions. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2701-2704.	1.7	29
90	Kinetic salt effects on the outer sphere electron transfer reaction between hexacyanoferrate(II) and 4-pyridinecarboxylatopentammine cobalt(III). International Journal of Chemical Kinetics, 1992, 24, 1083-1091.	1.6	2

#	Article	lF	CITATIONS
91	The formation of the complex pentacyano(3-pyrazincarboxylate)ferrate(II) in various water-cosolvent mixtures. International Journal of Chemical Kinetics, 1990, 22, 1017-1026.	1.6	14