Wei Chen ## List of Publications by Citations Source: https://exaly.com/author-pdf/5184002/wei-chen-publications-by-citations.pdf Version: 2024-04-19 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 196 78 17,539 127 h-index g-index citations papers 198 7.8 22,107 4.3 L-index avg, IF ext. citations ext. papers | # | Paper | IF | Citations | |-----|---|-----|-----------| | 196 | Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. <i>Natural Hazards</i> , 2012 , 63, 965-996 | 3 | 559 | | 195 | A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. <i>Catena</i> , 2017 , 151, 147-160 | 5.8 | 444 | | 194 | Application of frequency ratio and weights of evidence models in landslide susceptibility mapping for the Shangzhou District of Shangluo City, China. <i>Environmental Earth Sciences</i> , 2016 , 75, 1 | 2.9 | 441 | | 193 | Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at MuglingNarayanghat road section in Nepal Himalaya. Natural Hazards, 2013, 65, 135-165 | 3 | 422 | | 192 | Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. <i>Landslides</i> , 2016 , 13, 839-856 | 6.6 | 376 | | 191 | GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. <i>Environmental Monitoring and Assessment</i> , 2016 , 188, 44 | 3.1 | 327 | | 190 | Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, DempsterBhafer, and weights-of-evidence models. <i>Journal of Asian Earth Sciences</i> , 2012 , 61, 221-236 | 2.8 | 301 | | 189 | Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. <i>Catena</i> , 2012 , 97, 71-84 | 5.8 | 300 | | 188 | Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. <i>Catena</i> , 2016 , 137, 360-372 | 5.8 | 293 | | 187 | Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. <i>Arabian Journal of Geosciences</i> , 2014 , 7, 725-742 | 1.8 | 270 | | 186 | Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. <i>Earth Science Informatics</i> , 2015 , 8, 867-883 | 2.5 | 258 | | 185 | Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. <i>Arabian Journal of Geosciences</i> , 2015 , 8, 7059-7071 | 1.8 | 256 | | 184 | Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). <i>Catena</i> , 2018 , 163, 399-413 | 5.8 | 246 | | 183 | Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. <i>Arabian Journal of Geosciences</i> , 2013 , 6, 2873-2888 | 1.8 | 243 | | 182 | Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. <i>Geomorphology</i> , 2016 , 259, 105-118 | 4.3 | 242 | | 181 | Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. <i>Geocarto International</i> , 2016 , 31, 42-70 | 2.7 | 228 | | 180 | Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. <i>Journal of Earth System Science</i> , 2013 , 122, 349-369 | 1.8 | 224 | | 179 | Prediction of the landslide susceptibility: Which algorithm, which precision?. <i>Catena</i> , 2018 , 162, 177-192 | 2 5.8 | 223 | |-----|---|-------------------|-----| | 178 | Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. <i>Science of the Total Environment</i> , 2018 , 615, 438-451 | 10.2 | 220 | | 177 | A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. <i>Natural Hazards</i> , 2016 , 83, 947-987 | 3 | 214 | | 176 | Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. <i>Arabian Journal of Geosciences</i> , 2013 , 6, 2351-2365 | 1.8 | 211 | | 175 | Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naMe Bayes tree for landslide susceptibility modeling. <i>Science of the Total Environment</i> , 2018 , 644, 1006-1018 | 10.2 | 206 | | 174 | Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. <i>Geoderma</i> , 2017 , 305, 314-327 | 6.7 | 202 | | 173 | Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. <i>Science of the Total Environment</i> , 2017 , 609, 764-775 | 10.2 | 198 | | 172 | Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of nawe bayes, multilayer perceptron neural networks, and functional trees methods. <i>Theoretical and Applied Climatology</i> , 2017 , 128, 255-273 | 3 | 195 | | 171 | Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. <i>Science of the Total Environment</i> , 2018 , 626, 1121-1135 | 10.2 | 191 | | 170 | Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. <i>Environmental Earth Sciences</i> , 2016 , 75, 1 | 2.9 | 188 | | 169 | Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. <i>Science of the Total Environment</i> , 2018 , 621, 1124-114 | 41 ^{0.2} | 186 | | 168 | Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. <i>Science of the Total Environment</i> , 2018 , 625, 575-588 | 10.2 | 178 | | 167 | GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. <i>Hydrogeology Journal</i> , 2014 , 22, 643-662 | 3.1 | 171 | | 166 | Groundwater qanat potential mapping using frequency ratio and Shannon entropy models in the Moghan watershed, Iran. <i>Earth Science Informatics</i> , 2015 , 8, 171-186 | 2.5 | 168 | | 165 | Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. <i>Catena</i> , 2019 , 172, 212-231 | 5.8 | 162 | | 164 | Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. <i>Computers and Geosciences</i> , 2018 , 112, 23-37 | 4.5 | 162 | | 163 | A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping. <i>Water Resources Management</i> , 2015 , 29, 5217-5236 | 3.7 | 157 | | 162 | GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. <i>Science of the Total Environment</i> , 2018 , 634, 853-867 | 10.2 | 156 | | 161 | GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. <i>Catena</i> , 2018 , 164, 135-149 | 5.8 | 152 | |-----|--|------|-----| | 160 | Modeling flood susceptibility using data-driven approaches of nalle Bayes tree, alternating decision tree, and random forest methods. <i>Science of the Total Environment</i> , 2020 , 701, 134979 | 10.2 | 146 | | 159 | An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. <i>Natural Hazards</i> , 2015 , 78, 1749-1776 | 3 | 135 | | 158 | Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. <i>Natural Hazards</i> , 2016 , 82, 1231-1258 | 3 | 135 | | 157 | GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, NaWe-Bayes tree, and alternating decision tree models. <i>Geomatics, Natural Hazards and Risk</i> , 2017 , 8, 950-973 | 3.6 | 130 | | 156 | A novel hybrid artificial intelligence approach based on the rotation forest ensemble and nawe Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. <i>Geomatics, Natural Hazards and Risk</i> , 2017 , 8, 1955-1977 | 3.6 | 127 | | 155 | Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. <i>Geomorphology</i> , 2017 , 298, 118-137 | 4.3 | 125 | | 154 | Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. <i>Science of the Total Environment</i> , 2019 , 668, 124-138 | 10.2 | 125 | | 153 | Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannons entropy, statistical index, and weighting factor models. <i>Environmental Monitoring and Assessment</i> , 2016 , 188, 656 | 3.1 | 121 | | 152 | Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. <i>Journal of Hydrology</i> , 2019 , 575, 864-873 | 6 | 120 | | 151 | New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. <i>Water (Switzerland)</i> , 2018 , 10, 1210 | 3 | 120 | | 150 | Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. <i>Science of the Total Environment</i> , 2017 , 579, 913-927 | 10.2 | 115 | | 149 | Landslide spatial modelling using novel bivariate statistical based NaWe Bayes, RBF Classifier, and RBF Network machine learning algorithms. <i>Science of the Total Environment</i> , 2019 , 663, 1-15 | 10.2 | 112 | | 148 | A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. <i>Bulletin of Engineering Geology and the Environment</i> , 2018 , 77, 647-664 | 4 | 112 | | 147 | Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. <i>Ecological Indicators</i> , 2016 , 64, 72-84 | 5.8 | 111 | | 146 | Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. <i>Journal of Environmental Management</i> , 2019 , 247, 712-729 | 7.9 | 110 | | 145 | A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. <i>Geocarto International</i> , 2017 , 32, 367-385 | 2.7 | 108 | | 144 | GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. <i>Environmental Earth Sciences</i> , 2016 , 75, 1 | 2.9 | 108 | | 143 | Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 2540 | 2.6 | 108 | |-----|--|-----|-----| | 142 | Spatial modelling of gully erosion in Mazandaran Province, northern Iran. <i>Catena</i> , 2018 , 161, 1-13 | 5.8 | 106 | | 141 | Analysis and evaluation of landslide susceptibility: a review on articles published during 2005\(\textit{0}016\) (periods of 2005\(\textit{0}012\) and 2013\(\textit{0}016\)). Arabian Journal of Geosciences, 2018, 11, 1 | 1.8 | 102 | | 140 | Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. <i>Journal of Hydrology</i> , 2019 , 572, 435-44 | 86 | 101 | | 139 | Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. <i>Geocarto International</i> , 2015 , 30, 662-685 | 2.7 | 100 | | 138 | Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. <i>Landslides</i> , 2017 , 14, 1091-1111 | 6.6 | 100 | | 137 | Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. <i>Sensors</i> , 2018 , 18, | 3.8 | 100 | | 136 | GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. <i>Geomatics, Natural Hazards and Risk</i> , 2017 , 8, 1538-1561 | 3.6 | 98 | | 135 | Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. <i>Geoderma</i> , 2019 , 340, 55-69 | 6.7 | 96 | | 134 | Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. <i>Theoretical and Applied Climatology</i> , 2017 , 130, 609-633 | 3 | 95 | | 133 | Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods. <i>Scientific Reports</i> , 2018 , 8, 15364 | 4.9 | 92 | | 132 | Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). <i>Applied Sciences</i> (Switzerland), 2019 , 9, 3755 | 2.6 | 89 | | 131 | Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. <i>Sensors</i> , 2018 , 18, | 3.8 | 89 | | 130 | A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. <i>Theoretical and Applied Climatology</i> , 2018 , 131, 967-984 | 3 | 88 | | 129 | Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. <i>Remote Sensing</i> , 2018 , 10, 1527 | 5 | 88 | | 128 | Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. <i>Bulletin of Engineering Geology and the Environment</i> , 2019 , 78, 4397-4419 | 4 | 87 | | 127 | GIS-based landslide spatial modeling in Ganzhou City, China. <i>Arabian Journal of Geosciences</i> , 2016 , 9, 1 | 1.8 | 86 | | 126 | A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area,
China. <i>Geomorphology</i> , 2017 , 290, 1-16 | 4.3 | 84 | | 125 | Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. <i>Remote Sensing</i> , 2019 , 11, 1589 | 5 | 82 | |-----|---|------|----------------| | 124 | GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China. <i>Journal of Earth System Science</i> , 2015 , 124, 1399-1415 | 1.8 | 81 | | 123 | Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. <i>Geocarto International</i> , 2016 , 1-16 | 2.7 | 81 | | 122 | A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. <i>Geocarto International</i> , 2018 , 33, 1398-1420 | 2.7 | 80 | | 121 | A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). <i>Environmental Earth Sciences</i> , 2017 , 76, 1 | 2.9 | 79 | | 120 | Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). <i>Bulletin of Engineering Geology and the Environment</i> , 2019 , 78, 247-266 | 4 | 78 | | 119 | GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. <i>Environmental Earth Sciences</i> , 2018 , 77, 1 | 2.9 | 78 | | 118 | Novel Hybrid Integration Approach of Bagging-Based Fisher Linear Discriminant Function for Groundwater Potential Analysis. <i>Natural Resources Research</i> , 2019 , 28, 1239-1258 | 4.9 | 77 | | 117 | Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 171 | 2.6 | 77 | | 116 | Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). <i>Journal of Hydrology</i> , 2020 , 588, 125033 | 6 | 76 | | 115 | Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms. <i>Bulletin of Engineering Geology and the Environment</i> , 2018 , 77, 611-629 | 4 | 74 | | 114 | Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods. <i>Science of the Total Environment</i> , 2019 , 684, 31-49 | 10.2 | 73 | | 113 | Flood susceptibility mapping using geospatial frequency ratio technique: a case study of Subarnarekha River Basin, India. <i>Modeling Earth Systems and Environment</i> , 2018 , 4, 395-408 | 3.2 | 73 | | 112 | Spatial Modelling of Gully Erosion Using GIS and R Programing: A Comparison among Three Data Mining Algorithms. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1369 | 2.6 | 73 | | 111 | Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Nalle Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17, | 4.6 | 73 | | 110 | GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. <i>Catena</i> , 2020 , 195, 104777 | 5.8 | 7 ² | | 109 | Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function[bgistic regression algorithm. Land Degradation and Development, 2018, 29, 4035-4049 | 4.4 | 72 | | 108 | Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. <i>Geoscience Frontiers</i> , 2021 , 12, 639-655 | 6 | 71 | | 107 | Multi-hazard probability assessment and mapping in Iran. <i>Science of the Total Environment</i> , 2019 , 692, 556-571 | 10.2 | 70 | |-----|---|------|----| | 106 | Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. <i>Environmental Earth Sciences</i> , 2015 , 73, 1515-1533 | 2.9 | 70 | | 105 | Landslide susceptibility mapping along Bhalubang Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. <i>Journal of Mountain Science</i> , 2014 , 11, 1266-1285 | 2.1 | 69 | | 104 | Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping.
Journal of Hydrology, 2020 , 583, 124602 | 6 | 68 | | 103 | GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. <i>Catena</i> , 2021 , 196, 104833 | 5.8 | 68 | | 102 | Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China). <i>Geomatics, Natural Hazards and Risk</i> , 2017 , 8, 544-569 | 3.6 | 67 | | 101 | Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. <i>Geoscience Frontiers</i> , 2021 , 12, 93-107 | 6 | 67 | | 100 | Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. <i>Geoderma</i> , 2018 , 330, 65-78 | 6.7 | 67 | | 99 | Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. <i>Remote Sensing</i> , 2020 , 12, 475 | 5 | 66 | | 98 | A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. <i>Arabian Journal of Geosciences</i> , 2017 , 10, 1 | 1.8 | 65 | | 97 | GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. <i>Environmental Earth Sciences</i> , 2016 , 75, 1 | 2.9 | 65 | | 96 | Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel functions. <i>Bulletin of Engineering Geology and the Environment</i> , 2019 , 78, 4017-4034 | 4 | 65 | | 95 | Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. <i>Geocarto International</i> , 2019 , 34, 1177-1201 | 2.7 | 63 | | 94 | A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. <i>Remote Sensing</i> , 2019 , 11, 62 | 5 | 63 | | 93 | Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. <i>Natural Hazards</i> , 2019 , 96, 173-212 | 3 | 63 | | 92 | GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models. <i>Scandinavian Journal of Forest Research</i> , 2016 , 31, 80-98 | 1.7 | 62 | | 91 | PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. <i>Science of the Total Environment</i> , 2019 , 664, 296-311 | 10.2 | 60 | | 90 | A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. <i>Arabian Journal of Geosciences</i> , 2016 , 9, 1 | 1.8 | 59 | | 89 | Comparison of machine learning models for gully erosion susceptibility mapping. <i>Geoscience Frontiers</i> , 2020 , 11, 1609-1620 | 6 | 59 | |----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----| | 88 | Optimization of Computational Intelligence Models for Landslide Susceptibility Evaluation. <i>Remote Sensing</i> , 2020 , 12, 2180 | 5 | 58 | | 87 | Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia. <i>Bulletin of Engineering Geology and the Environment</i> , 2016 , 75, 63-87 | 4 | 57 | | 86 | Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. <i>Science of the Total Environment</i> , 2020 , 741, 139937 | 10.2 | 55 | | 85 | Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020). <i>International Journal of Infectious Diseases</i> , 2020 , 98, 90-108 | 10.5 | 53 | | 84 | Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. <i>Forests</i> , 2020 , 11, 421 | 2.8 | 53 | | 83 | Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling. <i>Entropy</i> , 2018 , 20, | 2.8 | 51 | | 82 | Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 425 | 2.6 | 50 | | 81 | Gully headcut susceptibility modeling using functional trees, naWe Bayes tree, and random forest models. <i>Geoderma</i> , 2019 , 342, 1-11 | 6.7 | 48 | | 80 | GIS-Based Evaluation of Landslide Susceptibility Models Using Certainty Factors and Functional Trees-Based Ensemble Techniques. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 16 | 2.6 | 48 | | 79 | Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaWeBayes Machine-Learning Algorithms. <i>Sustainability</i> , 2018 , 10, 3697 | 3.6 | 48 | | 78 | Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17, | 4.6 | 46 | | 77 | Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. <i>Journal of Hydrology</i> , 2020 , 587, 125007 | 6 | 45 | | 76 | A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. <i>Water</i> (Switzerland), 2019 , 11, 2013 | 3 | 45 | | 75 | Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling. <i>Entropy</i> , 2019 , 21, | 2.8 | 44 | | 74 | GIS-Based Gully Erosion Susceptibility Mapping: A Comparison of Computational Ensemble Data Mining Models. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 2039 | 2.6 | 44 | | 73 | Landslide Susceptibility Evaluation Using Hybrid Integration of Evidential Belief Function and Machine Learning Techniques. <i>Water (Switzerland)</i> , 2020 , 12, 113 | 3 | 43 | | 72 | A Comparative Assessment of Random Forest and k-Nearest Neighbor Classifiers for Gully Erosion Susceptibility Mapping. <i>Water (Switzerland)</i> , 2019 , 11, 2076 | 3 | 42 | ## (2020-2014) | 71 | Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. <i>Arabian Journal of Geosciences</i> , 2014 , 7, 4499-4511 | 1.8 | 42 | | |----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|--| | 70 | Is multi-hazard mapping effective in assessing natural hazards and integrated watershed management?. <i>Geoscience Frontiers</i> , 2020 , 11, 1203-1217 | 6 | 42 | | | 69 | GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran. <i>Remote Sensing</i> , 2020 , 12, 2478 | 5 | 41 | | | 68 | Application of frequency ratio, statistical index, and index of entropy models and their comparison in landslide susceptibility mapping for the Baozhong Region of Baoji, China. <i>Arabian Journal of Geosciences</i> , 2015 , 8, 1829-1841 | 1.8 | 40 | | | 67 | Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. <i>Geocarto International</i> , 2016 , 1-21 | 2.7 | 40 | | | 66 | Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. <i>Catena</i> , 2020 , 187, 104 | 36 4 | 40 | | | 65 | Hybrid Computational Intelligence Methods for Landslide Susceptibility Mapping. <i>Symmetry</i> , 2020 , 12, 325 | 2.7 | 39 | | | 64 | Remote Sensing Data Derived Parameters and its Use in Landslide Susceptibility Assessment Using Shannon Entropy and GIS. <i>Applied Mechanics and Materials</i> , 2012 , 225, 486-491 | 0.3 | 38 | | | 63 | Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). <i>Geomorphology</i> , 2019 , 329, 184-193 | 4.3 | 38 | | | 62 | Applying different scenarios for landslide spatial modeling using computational intelligence methods. <i>Environmental Earth Sciences</i> , 2017 , 76, 1 | 2.9 | 37 | | | 61 | Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. <i>Journal of Environmental Management</i> , 2021 , 284, 112015 | 7.9 | 37 | | | 60 | Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. <i>Environmental Earth Sciences</i> , 2016 , 75, 1 | 2.9 | 35 | | | 59 | Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions. <i>Environmental Earth Sciences</i> , 2016 , 75, 1 | 2.9 | 32 | | | 58 | SEVUCAS: A Novel GIS-Based Machine Learning Software for Seismic Vulnerability Assessment. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 3495 | 2.6 | 31 | | | 57 | Spatial Prediction of Landslides Using Hybrid Integration of Artificial Intelligence Algorithms with Frequency Ratio and Index of Entropy in Nanzheng County, China. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 29 | 2.6 | 31 | | | 56 | Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions. <i>ISPRS International Journal of Geo-Information</i> , 2020 , 9, 144 | 2.9 | 29 | | | 55 | Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. <i>Forests</i> , 2020 , 11, 830 | 2.8 | 29 | | | 54 | A machine learning framework for multi-hazards modeling and mapping in a mountainous area. <i>Scientific Reports</i> , 2020 , 10, 12144 | 4.9 | 28 | | | 53 | A comparative study on groundwater spring potential analysis based on statistical index, index of entropy and certainty factors models. <i>Geocarto International</i> , 2018 , 33, 754-769 | 2.7 | 26 | |----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----| | 52 | Combining Evolutionary Algorithms and Machine Learning Models in Landslide Susceptibility Assessments. <i>Remote Sensing</i> , 2020 , 12, 3854 | 5 | 26 | | 51 | Soil erosion assessment using RUSLE model and its validation by FR probability model. <i>Geocarto International</i> , 2020 , 35, 1750-1768 | 2.7 | 26 | | 50 | Hybrid Computational Intelligence Models for Improvement Gully Erosion Assessment. <i>Remote Sensing</i> , 2020 , 12, 140 | 5 | 25 | | 49 | An assessment of metaheuristic approaches for flood assessment. <i>Journal of Hydrology</i> , 2020 , 582, 124 | 1586 | 25 | | 48 | Performance Evaluation of GIS-Based Artificial Intelligence Approaches for Landslide Susceptibility Modeling and Spatial Patterns Analysis. <i>ISPRS International Journal of Geo-Information</i> , 2020 , 9, 443 | 2.9 | 25 | | 47 | Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study. <i>Sensors</i> , 2020 , 20, | 3.8 | 24 | | 46 | Using machine learning algorithms to map the groundwater recharge potential zones. <i>Journal of Environmental Management</i> , 2020 , 265, 110525 | 7.9 | 24 | | 45 | Evaluation of factors affecting gully headcut location using summary statistics and the maximum entropy model: Golestan Province, NE Iran. <i>Science of the Total Environment</i> , 2019 , 677, 281-298 | 10.2 | 23 | | 44 | Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). <i>Geomatics, Natural Hazards and Risk</i> , 2017 , 8, 1997-2022 | 3.6 | 23 | | 43 | Landslide Susceptibility Mapping Using GIS-Based Data Mining Algorithms. <i>Water (Switzerland)</i> , 2019 , 11, 2292 | 3 | 23 | | 42 | Groundwater spring potential assessment using new ensemble data mining techniques. Measurement: Journal of the International Measurement Confederation, 2020, 157, 107652 | 4.6 | 22 | | 41 | Gully Head-Cut Distribution Modeling Using Machine Learning Methods A Case Study of N.W. Iran. Water (Switzerland), 2020, 12, 16 | 3 | 21 | | 40 | A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping. <i>Sustainability</i> , 2019 , 11, 6323 | 3.6 | 21 | | 39 | A comparative study of statistical index and certainty factor models in landslide susceptibility mapping: a case study for the Shangzhou District, Shaanxi Province, China. <i>Arabian Journal of Geosciences</i> , 2015 , 8, 9079-9088 | 1.8 | 20 | | 38 | Sedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh), India. <i>Catena</i> , 2019 , 182, 104150 | 5.8 | 20 | | 37 | Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. <i>Geocarto International</i> , 2021 , 1-21 | 2.7 | 18 | | 36 | Spatial Modeling of Gully Erosion Using Linear and Quadratic Discriminant Analyses in GIS and R 2019 , 299-321 | | 18 | ## (2020-2020) | 35 | A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 42022-42039 | 5.1 | 17 | |----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----| | 34 | Evaluation of multi-hazard map produced using MaxEnt machine learning technique. <i>Scientific Reports</i> , 2021 , 11, 6496 | 4.9 | 17 | | 33 | Application of Fuzzy Analytical Network Process Model for Analyzing the Gully Erosion Susceptibility. <i>Advances in Natural and Technological Hazards Research</i> , 2019 , 105-125 | 1.8 | 17 | | 32 | Gully Erosion Susceptibility Mapping Using Multivariate Adaptive Regression SplinesReplications and Sample Size Scenarios. <i>Water (Switzerland)</i> , 2019 , 11, 2319 | 3 | 16 | | 31 | Location-allocation modeling for emergency evacuation planning with GIS and remote sensing: A case study of Northeast Bangladesh. <i>Geoscience Frontiers</i> , 2021 , 12, 101095 | 6 | 16 | | 30 | Toward the development of deep-learning analyses for snow avalanche releases in Mountain regions. <i>Geocarto International</i> ,1-25 | 2.7 | 16 | | 29 | Modeling Spatial Flood using Novel Ensemble Artificial Intelligence Approaches in Northern Iran. <i>Remote Sensing</i> , 2020 , 12, 3423 | 5 | 15 | | 28 | GIS-based susceptibility assessment of the occurrence of gully headcuts and pipe collapses in a semi-arid environment: Golestan Province, NE Iran. <i>Land Degradation and Development</i> , 2019 , 30, 2211 | -2 22 5 | 15 | | 27 | Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. <i>Scientific Reports</i> , 2021 , 11, 5587 | 4.9 | 15 | | 26 | Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. <i>Remote Sensing</i> , 2020 , 12, 4134 | 5 | 12 | | 25 | Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. <i>Forest Ecology and Management</i> , 2020 , 473, 118338 | 3.9 | 11 | | 24 | Volume, gravitational potential energy reduction, and regional centroid position change in the wake of landslides triggered by the 14 April 2010 Yushu earthquake of China. <i>Arabian Journal of Geosciences</i> , 2014 , 7, 2129-2138 | 1.8 | 11 | | 23 | Deep learning and boosting framework for piping erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region. <i>Geocarto International</i> ,1-27 | 2.7 | 11 | | 22 | Assessment of land degradation using machine-learning techniques: A case of declining rangelands. <i>Land Degradation and Development</i> , 2021 , 32, 1452-1466 | 4.4 | 11 | | 21 | Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques. <i>Natural Hazards</i> , 2021 , 108, 1291-1316 | 3 | 10 | | 20 | Landslide susceptibility mapping using statistical bivariate models and their hybrid with normalized spatial-correlated scale index and weighted calibrated landslide potential model. <i>Environmental Earth Sciences</i> , 2021 , 80, 1 | 2.9 | 10 | | 19 | Debris flows modeling using geo-environmental factors: developing hybridized deep-learning algorithms. <i>Geocarto International</i> ,1-25 | 2.7 | 9 | | 18 | Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran. <i>Natural Hazards</i> , 2020 , 104, 305-327 | 3 | 8 | | 17 | Incorporating Landslide Spatial Information and Correlated Features among Conditioning Factors for Landslide Susceptibility Mapping. <i>Remote Sensing</i> , 2021 , 13, 2166 | 5 | 8 | |----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---| | 16 | A novel hybrid bivariate statistical method entitled FROC for landslide susceptibility assessment. <i>Environmental Earth Sciences</i> , 2018 , 77, 1 | 2.9 | 8 | | 15 | Comparing the Performance of a Logistic Regression and a Random Forest Model in Landslide Susceptibility Assessments. the Case of Wuyaun Area, China 2017 , 1043-1050 | | 7 | | 14 | Assessing, mapping, and optimizing the locations of sediment control check dams construction. <i>Science of the Total Environment</i> , 2020 , 739, 139954 | 10.2 | 6 | | 13 | Hybrids of Support Vector Regression with Grey Wolf Optimizer and Firefly Algorithm for Spatial Prediction of Landslide Susceptibility. <i>Remote Sensing</i> , 2021 , 13, 4966 | 5 | 6 | | 12 | Study on recognition of mine water sources based on statistical analysis. <i>Arabian Journal of Geosciences</i> , 2020 , 13, 1 | 1.8 | 5 | | 11 | Optimizing collapsed pipes mapping: Effects of DEM spatial resolution. <i>Catena</i> , 2020 , 187, 104344 | 5.8 | 5 | | 10 | Performance Evaluation and Comparison of Bivariate Statistical-Based Artificial Intelligence Algorithms for Spatial Prediction of Landslides. <i>ISPRS International Journal of Geo-Information</i> , 2020 , 9, 696 | 2.9 | 4 | | 9 | Gully head modelling in Iranian Loess Plateau under different scenarios. Catena, 2020, 194, 104769 | 5.8 | 4 | | 8 | Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. <i>Geoscience Frontiers</i> , 2021 , 13, 101317 | 6 | 3 | | 7 | A Review on the Gully Erosion and Land Degradation in Iran. <i>Advances in Science, Technology and Innovation</i> , 2020 , 393-403 | 0.3 | 2 | | 6 | Gully Erosion Susceptibility Assessment Through the SVM Machine Learning Algorithm (SVM-MLA). <i>Advances in Science, Technology and Innovation</i> , 2020 , 415-425 | 0.3 | 2 | | 5 | Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. <i>Geomorphology</i> , 2022 , 408, 108236 | 4.3 | 2 | | 4 | Landslide susceptibility modeling based on remote sensing data and data mining techniques. <i>Environmental Earth Sciences</i> , 2022 , 81, 1 | 2.9 | 1 | | 3 | Comparison of statistical and machine learning approaches in land subsidence modelling. <i>Geocarto International</i> ,1-21 | 2.7 | O | | 2 | Landslide susceptibility modeling based on GIS and ensemble techniques. <i>Arabian Journal of Geosciences</i> , 2022 , 15, 1 | 1.8 | O | | 1 | Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt <i>Environmental Science and Pollution Research</i> , 2022 , 1 | 5.1 | 0 |