Chen-Bin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5183631/publications.pdf

Version: 2024-02-01

93 papers 2,068 citations

304743

22

h-index

233421 45 g-index

95 all docs 95 docs citations 95 times ranked 1841 citing authors

#	Article	IF	Citations
1	Ultrafast microscopy of a twisted plasmonic spin skyrmion. Applied Physics Reviews, 2022, 9, .	11.3	33
2	Broadband plasmonic half-subtractor and digital demultiplexer in pure parallel connections. Nanophotonics, 2022, 11, 3623-3629.	6.0	4
3	Ultrafast nanofemto photoemission electron microscopy of vectorial plasmonic fields. MRS Bulletin, 2021, 46, 738-746.	3.5	15
4	A topological lattice of plasmonic merons. Applied Physics Reviews, 2021, 8, .	11.3	27
5	A Polarization-Actuated Plasmonic Circulator. Nano Letters, 2020, 20, 7543-7549.	9.1	11
6	Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 2020, 588, 616-619.	27.8	113
7	Polarizationâ€Enabled Steering of Surface Plasmons Using Crossed Reciprocal Nanoantennas. Laser and Photonics Reviews, 2020, 14, 2000076.	8.7	13
8	CdSe/ZnS core-shell quantum dot assisted color conversion of violet laser diode for white lighting communication. Nanophotonics, 2019, 8, 2189-2201.	6.0	19
9	Versatile Amplitude and Phase Filtering in an Optical Tapped Delay Line Structure. , 2019, , .		O
10	Modal Symmetry Controlled Second-Harmonic Generation by Propagating Plasmons. Nano Letters, 2019, 19, 6424-6428.	9.1	19
11	Ultrawide Color Gamut Perovskite and CdSe/ZnS Quantum-Dots-Based White Light-Emitting Diode with High Luminous Efficiency. Nanomaterials, 2019, 9, 1314.	4.1	20
12	Investigation of temporal Talbot operation in a conventional optical tapped delay line structure. Optics Express, 2019, 27, 7922.	3.4	2
13	Talbot effect on orbital angular momentum beams: azimuthal intensity repetition-rate multiplication. Optics Letters, 2018, 43, 4033.	3.3	11
14	Self-imaging of Azimuthal Intensity Petal Based on Orbital Angular Momentum Beams. , 2018, , .		0
15	Interactions of spatially displaced surface plasmon vortices. , 2018, , .		O
16	Ultrafast second-harmonic generations in a plasmonic two-wire transmission-line., 2017,,.		0
17	Large-scale and structure-tunable laser spectral compression in an optical dispersion-increasing fiber. Optics Express, 2017, 25, 18024.	3.4	5
18	Photonic High-Power Continuous Wave THz-Wave Generation by Using Flip-Chip Packaged Uni-Traveling Carrier Photodiodes and a Femtosecond Optical Pulse Generator. Journal of Lightwave Technology, 2016, 34, 1387-1397.	4.6	17

#	Article	IF	Citations
19	Laser Noise Improvement Through Pulse Nonlinear Propagation in a Dispersion-Increasing Fiber. , 2015, ,		O
20	Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns. Applied Physics Letters, 2015, 106, .	3.3	22
21	Creating Optical Near-Field Orbital Angular Momentum in a Gold Metasurface. Nano Letters, 2015, 15, 2746-2750.	9.1	113
22	Creating Surface Plasmon Orbital Angular Momentum in a Gold Metasurface. , 2015, , .		0
23	Dual-peaked Laser Spectral Compression Generated in a Dispersion-increasing Fiber. , 2015, , .		0
24	Plasmonic archimedes spiral for selective optical trapping and rotation of optically isotropic particles. Proceedings of SPIE, 2014 , , .	0.8	0
25	Generation of surface plasmon vortex under linearly-polarized optical excitation in a gold metasurface. , 2014, , .		0
26	Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation. Optics Letters, 2014, 39, 853.	3.3	21
27	Self-referenced frequency comb measurement by using a polarization line-by-line pulse shaper. Optics Letters, 2014, 39, 1901.	3.3	3
28	Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral. Nano Letters, 2014, 14, 547-552.	9.1	195
29	Photonic High-Power 160-GHz Signal Generation by Using Ultrafast Photodiode and a High-Repetition-Rate Femtosecond Optical Pulse Train Generator. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 10-16.	2.9	6
30	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886.	9.1	36
31	Self-referenced frequency comb measurement by a polarization line-by-line pulse shaper., 2014, , .		O
32	Waveform-dependent laser spectral compression through pulse propagation in a dispersion-increasing fiber. , 2014, , .		0
33	Anomalous light bending with high efficiency by plasmonic phase-discontinuous air-slit array. , 2014, , .		0
34	Experimental observation of surface plasmon vortices with arbitrarily synthesized intensity patterns. , 2014, , .		0
35	Spectral compression of an all-normal dispersion fiber laser. , 2013, , .		0
36	Polarization shaper-assisted dual-quadrature spectral shearing interferometry., 2013,,.		0

#	Article	IF	Citations
37	Multimode Plasmon Excitation and <i>InÂSitu </i> Analysis in Top-Down Fabricated Nanocircuits. Physical Review Letters, 2013, 111, 183901.	7.8	42
38	Deterministic Synthesis of Optical Vortices in Tailored Plasmonic Archimedes Spiral. IEEE Photonics Journal, 2013, 5, 4800409-4800409.	2.0	30
39	Noniterative data inversion of phase retrieval by omega oscillating filtering for optical arbitrary waveform measurement. Optics Letters, 2013, 38, 2011.	3.3	6
40	Non-iterative Data Inversion of Phase Retrieval by Omega Oscillating Filtering (PROOF)., 2013, , .		0
41	Synthesis of arbitrarily polarized optical waveforms using vectorial temporal Talbot effect. , 2013, , .		0
42	Polarization line-by-line pulse shaping for the implementation of vectorial temporal Talbot effect. Optics Express, 2012, 20, 27062.	3.4	15
43	Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Optics Express, 2012, 20, 20342.	3.4	20
44	Photonic Generation of Few-Cycle Millimeter-Wave Pulse Using a Waveguide-Based Photonic-Transmitter-Mixer. IEEE Photonics Journal, 2012, 4, 1071-1079.	2.0	6
45	Photonic Generation and Detection of W-Band Chirped Millimeter-Wave Pulses for Radar. IEEE Photonics Technology Letters, 2012, 24, 1437-1439.	2.5	14
46	10Gb/s optical carrier distributed network with W-band (0.1THz) short-reach wireless communication system. Optics Communications, 2012, 285, 4307-4311.	2.1	5
47	Photonic Generation and Wireless Transmission of Linearly/Nonlinearly Continuously Tunable Chirped Millimeter-Wave Waveforms With High Time-Bandwidth Product at W-Band. IEEE Photonics Journal, 2012, 4, 215-223.	2.0	59
48	Large-scale laser spectral compression using a true dispersion-increasing fiber. , 2012, , .		0
49	Polarization spectral line-by-line pulse shaping. , 2012, , .		0
50	Shaping the surface plasmon vortex in an Archimedes spiral through geometrical design. , 2012, , .		0
51	Shaping the optical near-field vortex distribution in a plasmonic spiral. , 2011, , .		0
52	Millimeter-wave photonic wireless links for very high data rate communication. NPG Asia Materials, 2011, 3, 41-48.	7.9	83
53	Enhanced Performance of Narrowband Millimeter-Wave Generation Using Shaped-Pulse-Excited Photonic Transmitters. IEEE Photonics Technology Letters, 2011, 23, 902-904.	2.5	2
54	A plasmonic nanocluster designed for near-field polarization analysis. , 2011, , .		0

#	Article	IF	CITATIONS
55	Highly efficient femtosecond pulse stretching by tailoring cavity dispersion in erbium fiber lasers with an intracavity short-pass edge filter. Optics Express, 2011, 19, 15879.	3.4	O
56	Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis. Optics Letters, 2011, 36, 2339.	3.3	7
57	Forty-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation. Optics Letters, 2011, 36, 2611.	3.3	21
58	Wavelength-tunable spectral compression in a dispersion-increasing fiber. Optics Letters, 2011, 36, 2848.	3.3	28
59	Generation of rational optical vortices in a plasmonic spiral. , 2011, , .		0
60	Adiabatic soliton spectral compression in a dispersion-increasing fiber. , 2011, , .		0
61	Multiple Selective Excitations of Localized Surface Plasmons in Coupled Gold Nano-Spheres. , $2011, , .$		0
62	Generation and Delivery of 496-GHz Optical Pulse Train over 25-km Single-Mode Fiber using a Line-by-Line Optical Pulse Shaper. , $2011, \ldots$		0
63	40-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation., 2011,,.		0
64	Spectral Power Enhancement in a 100 GHz Photonic Millimeter-Wave Generator Enabled by Spectral Line-by-Line Pulse Shaping. IEEE Photonics Journal, 2010, 2, 719-727.	2.0	48
65	Generation and delivery of 1-ps optical pulses over 20 km singlemode fiber using a spectral line-by-line pulse shaper. , 2010, , .		0
66	Ultrasensitive femtosecond pulse measurement by shaper-assisted modified interferometric field autocorrelation. , $2010, , .$		0
67	Analysis of time-multiplexed optical line-by-line pulse shaping: application for radio-frequency and microwave photonics. Optics Express, 2010, 18, 9366.	3.4	7
68	Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper. Optics Express, 2010, 18, 24003.	3.4	34
69	Self-referenced spectral phase retrieval of 28-attojoule ultrashort pulses by modified interferometric field autocorrelation measurement., 2009,,.		0
70	Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization. Optics Letters, 2009, 34, 3875.	3.3	47
71	Synthesis of Millimeter-Wave Power Spectra Using Time-Multiplexed Optical Pulse Shaping. IEEE Photonics Technology Letters, 2009, 21, 1287-1289.	2.5	17
72	Quantitative Study of Optical Frequency Noise to Intensity Noise Conversion in Line-by-Line Pulse Shaping. IEEE Journal of Quantum Electronics, 2009, 45, 661-673.	1.9	1

#	Article	IF	CITATIONS
73	Spectral lineâ€byâ€line shaping for optical and microwave arbitrary waveform generations. Laser and Photonics Reviews, 2008, 2, 227-248.	8.7	45
74	Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding. Optics Express, 2008, 16, 2520.	3.4	65
75	Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms. Optics Express, 2008, 16, 11878.	3.4	54
76	Direct spectral phase retrieval of ultrashort pulses by double modified one-dimensional autocorrelation traces. Optics Express, 2008, 16, 20617.	3.4	13
77	Time-Multiplexed Photonically-Enabled Radio-Frequency Arbitrary Waveforms with 10-GHz Update Rate. , 2008, , .		0
78	Spectral line-by-line pulse shaping of enhanced number of frequency comb lines using a 2-D VIPA grating pulse shaper. , 2008, , .		0
79	DPSK Vulnerability and Counter-Measure in Code-Switched O-CDMA. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
80	Spectral Line-by-Line Processing on an Optical Frequency Comb Generator. , 2007, , .		0
81	Coherence Examination of Nonlinearly Broadened Phase-Modulated CW Laser Frequency Combs using a DPSK Encoder/Decoder. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
82	Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions. Optics Letters, 2007, 32, 3242.	3.3	65
83	Spectral line-by-line pulse shaping for optical arbitrary pulse-train generation. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2124.	2.1	22
84	Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator. IEEE Journal of Quantum Electronics, 2007, 43, 1163-1174.	1.9	74
85	5-GHz optical arbitrary waveform generation using > 100 independently controlled spectral lines from a compressed phase-modulated CW laser comb. LEOS Summer Topical Meeting, 2007, , .	0.0	1
86	Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photonics, 2007, 1, 463-467.	31.4	449
87	Investigation of Impact of Optical Comb Stability on Optical Arbitrary Waveform Generation via Line-by-Line Pulse Shaping. , 2006, , .		0
88	High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb. Electronics Letters, 2006, 42, 1114.	1.0	35
89	The impact of optical comb stability on waveforms generated via spectral line-by-line pulse shaping. Optics Express, 2006, 14, 13164.	3.4	14
90	Femtosecond Optical Pulse Generation using Line-by-Line Shaping on a Phase-Modulated CW Laser. , 2006, , .		0

CHEN-BIN HUANG

#	Article	IF	CITATIONS
91	Numerical analysis of waveguide-enhanced optical bistability. Optical and Quantum Electronics, 2003, 35, 1357-1366.	3.3	1
92	Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering. IEEE Photonics Technology Letters, 2000, 12, 167-169.	2.5	32
93	Light Matter. ACS Symposium Series, 0, , 153-171.	0.5	1