Rosalba Saija

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5183445/publications.pdf

Version: 2024-02-01

201674 189892 2,739 71 27 50 h-index citations g-index papers 73 73 73 3084 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improved backscattering detection in photonic force microscopy near dielectric surfaces with cylindrical vector beams. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 258, 107381.	2.3	6
2	T-matrix calculations of spin-dependent optical forces in optically trapped nanowires. European Physical Journal Plus, 2021, 136, 1.	2.6	4
3	Optical tweezers in a dusty universe. European Physical Journal Plus, 2021, 136, 1.	2.6	5
4	Intelligent non-colorimetric indicators for the perishable supply chain by non-wovens with photo-programmed thermal response. Nature Communications, 2020, 11, 5991.	12.8	21
5	On the Optical Properties of Ag–Au Colloidal Alloys Pulsed Laser Ablated in Liquid: Experiments and Theory. Journal of Physical Chemistry C, 2020, 124, 24930-24939.	3.1	10
6	Gain-Assisted Optomechanical Position Locking of Metal/Dielectric Nanoshells in Optical Potentials. ACS Photonics, 2020, 7, 1262-1270.	6.6	15
7	Light-matter Interaction Under Intense Field Conditions: Nonlinear Optical Properties of Metallic-dielectric Nanostructures. Current Nanomaterials, 2019, 4, 51-62.	0.4	2
8	Resonant Coupling and Gain Singularities in Metal/Dielectric Multishells: Quasi-Static Versus T-Matrix Calculations. Journal of Physical Chemistry C, 2019, 123, 29291-29297.	3.1	6
9	Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunneling-AFM, Light Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 3058-3067.	3.1	15
10	Biomineral Amorphous Lasers through Lightâ€Scattering Surfaces Assembled by Electrospun Fiber Templates. Laser and Photonics Reviews, 2018, 12, 1700224.	8.7	6
11	Optical trapping and optical force positioning of two-dimensional materials. Nanoscale, 2018, 10, 1245-1255.	5.6	44
12	SERS sensing of perampanel with nanostructured arrays of gold particles produced by pulsed laser ablation in water. Medical Devices & Sensors, 2018, 1, e10003.	2.7	5
13	Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218, 131-150.	2.3	150
14	Coherent backscattering of Raman light. Nature Photonics, 2017, 11, 170-176.	31.4	44
15	Optical Trapping of Plasmonic Mesocapsules: Enhanced Optical Forces and SERS. Journal of Physical Chemistry C, 2017, 121, 691-700.	3.1	21
16	Spectral shift between the near-field and far-field optoplasmonic response in gold nanospheres, nanoshells, homo- and hetero-dimers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 195, 97-106.	2.3	18
17	Spin-Momentum Locking in the Near Field of Metal Nanoparticles. ACS Photonics, 2017, 4, 2242-2249.	6.6	40
18	Ferdinando Borghese (26 May 1940–19 January 2017). Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 201, 226-228.	2.3	4

#	Article	IF	CITATIONS
19	Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array. Light: Science and Applications, 2016, 5, e16062-e16062.	16.6	97
20	Plasmonic Absorption Enhancement of a Single Quantum Dot. Plasmonics, 2015, 10, 955-962.	3.4	3
21	Subdiffraction Light Concentration by J-Aggregate Nanostructures. ACS Photonics, 2015, 2, 971-979.	6.6	35
22	Optical tweezers: a non-destructive tool for soft and biomaterial investigations. Rendiconti Lincei, 2015, 26, 203-218.	2.2	9
23	Superior plasmon absorption in iron-doped gold nanoparticles. Nanoscale, 2015, 7, 8782-8792.	5.6	52
24	Optical trapping of silver nanoplatelets. Optics Express, 2015, 23, 8720.	3.4	23
25	Scaling of optical forces on Au–PEG core–shell nanoparticles. RSC Advances, 2015, 5, 93139-93146.	3.6	15
26	Near-Field Optical Detection of Plasmon Resonance from Gold Nanoparticles: Theoretical and Experimental Evidence. Plasmonics, 2015, 10, 63-70.	3.4	5
27	Ultrastrong Coupling of Plasmons and Excitons in a Nanoshell. ACS Nano, 2014, 8, 11483-11492.	14.6	80
28	Modelling of the optical absorption spectra of PLAL prepared ZnO colloids. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 124, 86-93.	2.3	14
29	ZnO nanostructures produced by laser ablation in water: Optical and structural properties. Applied Surface Science, 2013, 272, 30-35.	6.1	27
30	Superposition through phases of the far fields scattered by the spheres of an aggregate. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 129, 69-78.	2.3	7
31	Trapping volume control in optical tweezers using cylindrical vector beams. Optics Letters, 2013, 38, 28.	3.3	72
32	Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids. Journal of Physical Chemistry C, 2011, 115, 5115-5122.	3.1	65
33	Size-Scaling in Optical Trapping of Silicon Nanowires. Nano Letters, 2011, 11, 4879-4884.	9.1	73
34	Fano-Doppler Laser Cooling of Hybrid Nanostructures. ACS Nano, 2011, 5, 7354-7361.	14.6	27
35	Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties. ACS Nano, 2011, 5, 905-913.	14.6	84
36	Stratified dust grains in the interstellar medium. III. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1898-1906.	2.3	4

#	Article	IF	Citations
37	Quantum Plasmonics with Quantum Dot-Metal Nanoparticle Molecules: Influence of the Fano Effect on Photon Statistics. Physical Review Letters, 2010, 105, 263601.	7.8	280
38	Brownian Motion of Graphene. ACS Nano, 2010, 4, 7515-7523.	14.6	194
39	Nanopolaritons: Vacuum Rabi Splitting with a Single Quantum Dot in the Center of a Dimer Nanoantenna. ACS Nano, 2010, 4, 6369-6376.	14.6	241
40	Rotational dynamics of optically trapped nanofibers. Optics Express, 2010, 18, 822.	3.4	69
41	ULTRAVIOLET RADIATION INSIDE INTERSTELLAR GRAIN AGGREGATES. III. FLUFFY GRAINS. Astrophysical Journal, 2009, 701, 1426-1435.	4.5	5
42	Optical trapping calculations for metal nanoparticles Comparison with experimental data for Au and Ag spheres. Optics Express, 2009, 17, 10231.	3.4	77
43	Optical trapping of carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2347-2351.	2.7	36
44	Radiation Torque and Force on Optically Trapped Linear Nanostructures. Physical Review Letters, 2008, 100, 163903.	7.8	81
45	Radiation torque on nonspherical particles in the transition matrix formalism: erratum. Optics Express, 2007, 15, 6946.	3.4	6
46	On the rotational stability of nonspherical particles driven by the radiation torque. Optics Express, 2007, 15, 8960.	3.4	6
47	Optical trapping of nonspherical particles in the T-matrix formalism. Optics Express, 2007, 15, 11984.	3.4	84
48	Optical trapping of nonspherical particles in the T-matrix formalism: erratum. Optics Express, 2007, 15 , 14618 .	3.4	10
49	Optical scattering by biological aerosols: experimental and computational results on spore simulants. Optics Express, 2006, 14, 6942.	3.4	12
50	Radiation torque on nonspherical particles in the transition matrix formalism. Optics Express, 2006, 14, 9508.	3.4	39
51	Ultraviolet Radiation inside Interstellar Grain Aggregates. I. The Density of Radiation. Astrophysical Journal, 2005, 624, 223-231.	4.5	10
52	Ultraviolet Radiation inside Interstellar Grain Aggregates. II. Field Depolarization. Astrophysical Journal, 2005, 633, 953-966.	4.5	6
53	Transverse components of the radiation force on nonspherical particles in the -matrix formalism. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 94, 163-179.	2.3	24
54	On the formation and survival of complex prebiotic molecules in interstellar grain aggregates. International Journal of Astrobiology, 2004, 3, 287-293.	1.6	10

#	Article	IF	Citations
55	Optical properties of interstellar grain aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 43-51.	2.3	6
56	Optical Properties of Composite Interstellar Grains: A Morphological Analysis. Astrophysical Journal, 2004, 615, 286-299.	4.5	32
57	Radiation pressure cross-sections of fluffy interstellar grains. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1239-1245.	4.4	28
58	Efficient light-scattering calculations for aggregates of large spheres. Applied Optics, 2003, 42, 2785.	2.1	26
59	Porous interstellar grains. Monthly Notices of the Royal Astronomical Society, 2001, 322, 749-756.	4.4	23
60	Optical properties of a dispersion of anisotropic particles with non-randomly distributed orientations. The case of atmospheric ice crystals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 70, 237-251.	2.3	18
61	Beyond Mie Theory: The Transition Matrix Approach in Interstellar Dust Modeling. Astrophysical Journal, 2001, 559, 993-1004.	4.5	37
62	Optical properties of a sphere in the vicinity of a plane surface. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 1505.	1.5	49
63	Analysis of the phosphorescence of thianthren crystals. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1993, 15, 1521-1532.	0.4	11
64	Effective dielectric function of a metal-dielectric composite with nonrandomly distributed particles. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1991, 13, 1159-1172.	0.4	2
65	Reliability of the theoretical description of electromagnetic scattering from nonspherical particles. Journal of Aerosol Science, 1989, 20, 1079-1081.	3.8	15
66	Optical Absorption Coefficient of a Dispersion of Clusters Composed of a Large Number of Spheres. Aerosol Science and Technology, 1987, 6, 173-181.	3.1	13
67	Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1985, 6, 545-558.	0.4	10
68	Multiple Electromagnetic Scattering from a Cluster of Spheres. II. Symmetrization. Aerosol Science and Technology, 1984, 3, 237-243.	3.1	15
69	Multiple Electromagnetic Scattering from a Cluster of Spheres. I. Theory. Aerosol Science and Technology, 1984, 3, 227-235.	3.1	93
70	Stratified dust grains in the interstellar medium - I. An accurate computational method for calculating their optical properties. Monthly Notices of the Royal Astronomical Society, 0, 384, 591-598.	4.4	27
71	Stratified dust grains in the interstellar medium - II. Time-dependent interstellar extinction. Monthly Notices of the Royal Astronomical Society, 0, 408, 535-541.	4.4	26