Ruowen Zong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5183425/publications.pdf

Version: 2024-02-01

394421 434195 1,054 51 19 31 citations h-index g-index papers 52 52 52 802 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of Fe (II) on stability of aqueous foam prepared by hydrolyzed rice protein in the presence of oil. Journal of Molecular Liquids, 2022, 345, 117666.	4.9	5
2	Highly stable fluorine-free foam by synergistically combining hydrolyzed rice protein and ferrous sulfate. Chemical Engineering Science, 2022, 250, 117378.	3.8	10
3	Experimental and numerical study of the fire behavior of a tank with oil leaking and burning. Chemical Engineering Research and Design, 2022, 159, 1203-1214.	5 . 6	22
4	Evacuation route optimization under real-time toxic gas dispersion through CFD simulation and Dijkstra algorithm. Journal of Loss Prevention in the Process Industries, 2022, 76, 104733.	3.3	16
5	Stability and thinning behaviour of aqueous foam films containing fluorocarbon and hydrocarbon surfactant mixtures. Journal of Molecular Liquids, 2022, 359, 119225.	4.9	12
6	Influence of seawater on interfacial Properties, foam performance and aggregation behaviour of Fluorocarbon/Hydrocarbon surfactant mixtures. Journal of Molecular Liquids, 2022, 359, 119297.	4.9	5
7	Foaming behavior of fluorocarbon surfactant used in fire-fighting: The importance of viscosity and self-assembly structure. Journal of Molecular Liquids, 2021, 327, 114811.	4.9	19
8	Influence of polymerization degree on the dynamic interfacial properties and foaming ability of ammonium polyphosphate (APP)-surfactant mixtures. Journal of Molecular Liquids, 2021, 335, 116175.	4.9	9
9	Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams. Chemical Engineering Research and Design, 2020, 133, 201-215.	5 . 6	57
10	Role of salts in performance of foam stabilized with sodium dodecyl sulfate. Chemical Engineering Science, 2020, 216, 115474.	3.8	50
11	Experimental investigation on the spread of aqueous foam over ethanol surface. Chinese Journal of Chemical Engineering, 2020, 28, 2946-2954.	3.5	8
12	Scaling applications of wall parameters in a tunnel fire. Tunnelling and Underground Space Technology, 2020, 106, 103585.	6.2	2
13	A dynamic approach for evaluating the consequences of toxic gas dispersion in the chemical plants using CFD and evacuation modelling. Journal of Loss Prevention in the Process Industries, 2020, 65, 104156.	3.3	18
14	Formation of stable aqueous foams on the ethanol layer: Synergistic stabilization of fluorosurfactant and polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124545.	4.7	27
15	Experimental study on flame height of two oil tank fires under different lip heights and distances. Chemical Engineering Research and Design, 2020, 139, 182-190.	5.6	28
16	Experimental investigation of flame length of buoyancy-controlled jet flames from inclined rectangular nozzles. Experimental Heat Transfer, 2019, 32, 239-250.	3.2	9
17	Experimental Study on the Temperature Decay and Maximum Temperature in a Container Fire., 2019,,.		О
18	Comparative study of toxicity for thermoplastic polyurethane and its flame-retardant composites. Journal of Thermoplastic Composite Materials, 2019, 32, 1393-1407.	4.2	16

#	Article	IF	CITATIONS
19	Fire Extinguishing Efficiency of Magnesium Hydroxide Powders under Different Particle Size. Procedia Engineering, 2018, 211, 447-455.	1.2	12
20	Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame. Microgravity Science and Technology, 2018, 30, 237-242.	1.4	7
21	Study of Downward Flame Spread and Fire Risk Evaluation of the Thermoplastic Materials. Procedia Engineering, 2018, 211, 590-598.	1.2	1
22	Effect of montmorillonite on flame spread characteristics and smoke toxicity of acrylonitrile butadiene styrene copolymer composite. Polymer Composites, 2018, 39, 1234-1241.	4.6	2
23	Modeling the pyrolysis study of non-charring polymers under reduced pressure environments. Heat and Mass Transfer, 2018, 54, 1135-1144.	2.1	4
24	Experimental Study on Pyrolysis of Black Non-Charring Polymers in the Reduced-Pressure Environment. Combustion, Explosion and Shock Waves, 2018, 54, 309-315.	0.8	0
25	Scale model and numerical validation of smoke movement in long-narrow underground fires. Tunnelling and Underground Space Technology, 2018, 78, 27-34.	6.2	6
26	A single \hat{l} ±-cobalt hydroxide/sodium alginate bilayer layer-by-layer assembly for conferring flame retardancy to flexible polyurethane foams. Materials Chemistry and Physics, 2017, 191, 52-61.	4.0	41
27	Analytical study of wall factor on the ceiling temperature distribution in the far field for tunnel fires. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171, 196-201.	3.9	21
28	Impact of openings on fire properties in the confined corridors. Applied Thermal Engineering, 2017, 110, 746-757.	6.0	8
29	Influence of fire accelerant on the thermal degradation and ignition of wood chip. Australian Journal of Forensic Sciences, 2016, 48, 538-548.	1.2	2
30	Experimental study on virtual origins of buoyancy-controlled jet flames with sidewalls. Applied Thermal Engineering, 2016, 106, 1088-1093.	6.0	20
31	An experimental study of flame height and air entrainment of buoyancy-controlled jet flames with sidewalls. Fuel, 2016, 183, 164-169.	6.4	36
32	Experimental determination of flame length of buoyancy-controlled turbulent jet diffusion flames from inclined nozzles. Applied Thermal Engineering, 2016, 93, 884-887.	6.0	53
33	Investigation of thermal decomposition of polymer nanocomposites with different char residues. Polymers for Advanced Technologies, 2015, 26, 1027-1033.	3.2	9
34	Numerical Simulation of Decomposition of Polymer Nano-composites: Investigation of the Influence of the Char Structure. Energy Procedia, 2015, 66, 165-168.	1.8	3
35	The physical model and validation study of ceiling-jet flow in near-field of corridor fires. International Journal of Heat and Mass Transfer, 2015, 88, 91-100.	4.8	11
36	Study of the fire characteristics for multi-source fires in the confined corridor. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147, 239-250.	3.9	21

3

#	Article	IF	Citations
37	Classification and identification of soot source with principal component analysis and back-propagation neural network. Australian Journal of Forensic Sciences, 2014, 46, 224-233.	1.2	15
38	Study on multi-section, nonlinear model of flashover in a long–narrow confined space. Journal of Fire Sciences, 2014, 32, 518-538.	2.0	1
39	A Reliability Evaluation of Lifeline Systems Effects on Fire Rescue. Procedia Engineering, 2014, 71, 296-303.	1.2	0
40	The source identification and classification study of soot after combustion. Fire and Materials, 2013, 37, 246-256.	2.0	2
41	Analysis of Influencing Factors on Flashover in the Long-narrow Confined Space. Procedia Engineering, 2013, 62, 250-257.	1.2	4
42	Theoretical and experimental analysis of ceiling-jet flow in corridor fires. Tunnelling and Underground Space Technology, 2011, 26, 651-658.	6.2	35
43	Effect of Different Fuels on Confined Compartment Fire. Journal of Fire Sciences, 2010, 28, 383-403.	2.0	5
44	Investigation of a combustible material in the fire of Hengyang merchant's building. Fire and Materials, 2008, 32, 399-415.	2.0	1
45	Investigation of thermal degradation and flammability of polyamide-6 and polyamide-6 nanocomposites. Journal of Applied Polymer Science, 2007, 104, 2297-2303.	2.6	31
46	Thermal degradation kinetics of polyethylene and silane-crosslinked polyethylene. Journal of Applied Polymer Science, 2005, 98, 1172-1179.	2.6	39
47	Evaluation of the thermal degradation of PC/ABS/montmorillonite nanocomposites. Polymers for Advanced Technologies, 2005, 16, 725-731.	3.2	25
48	Influence of organophilic clay and preparation methods on EVA/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2004, 91, 2416-2421.	2.6	27
49	Thermogravimetric evaluation of PC/ABS/montmorillonite nanocomposite. Polymer Degradation and Stability, 2004, 83, 423-428.	5.8	78
50	Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite. Applied Clay Science, 2004, 25, 49-55.	5.2	158
51	Halogen-free flame retardation and silane crosslinking of polyethylenes. Polymer Testing, 2003, 22, 533-538.	4.8	63