
Maria Bernardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5183285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous carbon: A versatile material for catalysis. Catalysis Today, 2017, 285, 194-203.	2.2	94
2	Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. Journal of Food Composition and Analysis, 2013, 30, 130-138.	1.9	91
3	Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures. Journal of Hazardous Materials, 2012, 219-220, 196-202.	6.5	78
4	High efficacy on diclofenac removal by activated carbon produced from potato peel waste. International Journal of Environmental Science and Technology, 2016, 13, 1989-2000.	1.8	70
5	Evaluation of hydrothermal carbonization as a preliminary step for the production of functional materials from biogas digestate. Journal of Analytical and Applied Pyrolysis, 2017, 124, 461-474.	2.6	65
6	New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts, 2019, 9, 133.	1.6	56
7	Kinetic Evaluation of the Pyrolysis of Polyethylene Waste. Energy & amp; Fuels, 2007, 21, 2489-2498.	2.5	52
8	Study of the Pyrolysis Kinetics of a Mixture of Polyethylene, Polypropylene, and Polystyrene. Energy & Fuels, 2010, 24, 6239-6247.	2.5	52
9	Evaluation of the adsorption potential of biochars prepared from forest and agri-food wastes for the removal of fluoxetine. Bioresource Technology, 2019, 292, 121973.	4.8	44
10	Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis. Journal of Colloid and Interface Science, 2013, 409, 158-165.	5.0	42
11	Toxicity of char residues produced in the co-pyrolysis of different wastes. Waste Management, 2010, 30, 628-635.	3.7	41
12	New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Management, 2019, 94, 136-145.	3.7	41
13	Determination of organophosphorous pesticides in the ppq range using a simple solidâ€phase extraction method combined with dispersive liquid–liquid microextraction. Journal of Separation Science, 2011, 34, 2475-2481.	1.3	35
14	Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials. Waste Management, 2017, 65, 186-194.	3.7	32
15	Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresource Technology, 2018, 266, 139-150.	4.8	29
16	Biomass Valorization to Produce Porous Carbons: Applications in CO2 Capture and Biogas Upgrading to Biomethane—A Mini-Review. Frontiers in Energy Research, 2021, 9, .	1.2	27
17	Adding value to gasification and co-pyrolysis chars as removal agents of Cr3+. Journal of Hazardous Materials, 2017, 321, 173-182.	6.5	25
18	Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. Waste Management, 2018, 72, 193-205.	3.7	24

Maria Bernardo

#	Article	IF	CITATIONS
19	Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts, 2020, 10, 1407.	1.6	24
20	Evaluation of activated carbons produced from Maize Cob Waste for adsorption-based CO2 separation and biogas upgrading. Journal of Environmental Chemical Engineering, 2022, 10, 107065.	3.3	24
21	Chemical and ecotoxicological characterization of solid residues produced during the co-pyrolysis of plastics and pine biomass. Journal of Hazardous Materials, 2009, 166, 309-317.	6.5	23
22	Validated dispersive liquid–liquid microextraction for analysis of organophosphorous pesticides in water. Journal of Separation Science, 2011, 34, 1326-1332.	1.3	23
23	Dispersive liquid–liquid microextraction of organophosphorous pesticides using nonhalogenated solvents. Journal of Separation Science, 2012, 35, 2653-2658.	1.3	23
24	Determination of aromatic compounds in eluates of pyrolysis solid residues using HS-GC–MS and DLLME–GC–MS. Talanta, 2009, 80, 104-108.	2.9	22
25	Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. Journal of Environmental Management, 2019, 249, 109351.	3.8	22
26	Determination of alkylphenols in eluates from pyrolysis solid residues using dispersive liquid–liquid microextraction. Chemosphere, 2010, 79, 1026-1032.	4.2	21
27	Characterization of chars produced in the co-pyrolysis of different wastes: Decontamination study. Journal of Hazardous Materials, 2012, 207-208, 28-35.	6.5	20
28	Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. Journal of Cleaner Production, 2020, 267, 121993.	4.6	20
29	Porous carbons derived from hydrothermally treated biogas digestate. Waste Management, 2020, 105, 170-179.	3.7	20
30	Nanoporous carbons prepared from argan nutshells as potential removal agents of diclofenac and paroxetine. Journal of Molecular Liquids, 2021, 326, 115368.	2.3	20
31	Leaching behaviour and ecotoxicity evaluation of chars from the pyrolysis of forestry biomass and polymeric materials. Ecotoxicology and Environmental Safety, 2014, 107, 9-15.	2.9	17
32	Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem, 2018, 10, 5215-5223.	1.8	15
33	Porous carbons-derived from vegetal biomass in the synthesis of quinoxalines. Mechanistic insights. Catalysis Today, 2020, 354, 90-99.	2.2	13
34	Acidic porous carbons involved in the green and selective synthesis of benzodiazepines. Catalysis Today, 2020, 357, 64-73.	2.2	13
35	Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars. Environmental Science and Pollution Research, 2017, 24, 22698-22708.	2.7	12
36	Multi-component adsorption study by using bone char: modelling and removal mechanisms. Environmental Technology (United Kingdom), 2022, 43, 789-804.	1.2	11

MARIA BERNARDO

#	Article	IF	CITATIONS
37	Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules, 2021, 26, 1010.	1.7	11
38	Study of the Organic Extraction and Acidic Leaching of Chars Obtained in the Pyrolysis of Plastics, Tire Rubber and Forestry Biomass Wastes. Procedia Engineering, 2012, 42, 1739-1746.	1.2	10
39	Activated Carbon/Pectin Composite Enterosorbent for Human Protection from Intoxication with Xenobiotics Pb(II) and Sodium Diclofenac. Molecules, 2022, 27, 2296.	1.7	9
40	Biocompatible locust bean gum as mesoporous carriers for naproxen delivery. Materials Chemistry and Physics, 2020, 239, 121973.	2.0	8
41	Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes. Environmental Science and Pollution Research, 2019, 26, 22723-22735.	2.7	7
42	Char from Spent Tire Rubber: A Potential Adsorbent of Remazol Yellow Dye. Journal of Carbon Research, 2019, 5, 76.	1.4	7
43	Highly efficient porous carbons for the removal of W(VI) oxyanion from wastewaters. Journal of Hazardous Materials, 2021, 412, 125201.	6.5	6
44	Recovery of phenolic compounds from multi-component solution by a synthesized activated carbon using resorcinol and formaldehyde. Water Science and Technology, 2018, 77, 456-466.	1.2	5
45	Functional porous carbons: Synthetic strategies and catalytic application in fine chemical synthesis. , 2021, , 299-352.		2
46	Assessment of potato peel and agro-forestry biochars supplementation on in vitro ruminal fermentation. PeerJ, 2020, 8, e9488.	0.9	2
47	Cr(III) dynamic removal in a fixed-bed column by using a co-gasification char. International Journal of Environmental Science and Technology, 2022, 19, 8145-8158.	1.8	1