Isabella Tessari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5183274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in Synucleinopathies. PLoS ONE, 2013, 8, e55375.	1.1	465
2	Conformational Equilibria in Monomeric α-Synuclein at the Single-Molecule Level. PLoS Biology, 2008, 6, e6.	2.6	181
3	The Reaction of α-Synuclein with Tyrosinase. Journal of Biological Chemistry, 2008, 283, 16808-16817.	1.6	116
4	A Topological Model of the Interaction between α-Synuclein and Sodium Dodecyl Sulfate Micellesâ€. Biochemistry, 2005, 44, 329-339.	1.2	112
5	Alpha-synuclein pore forming activity upon membrane association. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2876-2883.	1.4	86
6	Dopamine quinones interact with α-synuclein to form unstructured adducts. Biochemical and Biophysical Research Communications, 2010, 394, 424-428.	1.0	83
7	DJ-1 Is a Copper Chaperone Acting on SOD1 Activation. Journal of Biological Chemistry, 2014, 289, 10887-10899.	1.6	76
8	Pathogenic Mutations Shift the Equilibria of α‣ynuclein Single Molecules towards Structured Conformers. ChemBioChem, 2009, 10, 176-183.	1.3	71
9	Broken Helix in Vesicle and Micelle-Bound α-Synuclein: Insights from Site-Directed Spin Labeling-EPR Experiments and MD Simulations. Journal of the American Chemical Society, 2008, 130, 6690-6691.	6.6	69
10	Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson's Disease. NeuroMolecular Medicine, 2009, 11, 239-251.	1.8	64
11	Dopamine-derived Quinones Affect the Structure of the Redox Sensor DJ-1 through Modifications at Cys-106 and Cys-53. Journal of Biological Chemistry, 2012, 287, 18738-18749.	1.6	61
12	Copper(I)-α-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites. Inorganic Chemistry, 2013, 52, 1358-1367.	1.9	58
13	The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Human Molecular Genetics, 2014, 23, 5615-5629.	1.4	56
14	Parkinson's Disease–Associated LRRK2 Interferes with Astrocyte-Mediated Alpha-Synuclein Clearance. Molecular Neurobiology, 2021, 58, 3119-3140.	1.9	54
15	Transcriptome analysis of LRRK2 knock-out microglia cells reveals alterations of inflammatory- and oxidative stress-related pathways upon treatment with α-synuclein fibrils. Neurobiology of Disease, 2019, 129, 67-78.	2.1	53
16	Small molecules interacting with α-synuclein: antiaggregating and cytoprotective properties. Amino Acids, 2013, 45, 327-338.	1.2	52
17	PAK6 Phosphorylates 14-3-3Î ³ to Regulate Steady State Phosphorylation of LRRK2. Frontiers in Molecular Neuroscience, 2017, 10, 417.	1.4	46
18	Synapsin III is a key component of αâ€synuclein fibrils in Lewy bodies of PD brains. Brain Pathology, 2018, 28, 875-888.	2.1	37

ISABELLA TESSARI

#	Article	IF	CITATIONS
19	Covalent α-Synuclein Dimers: Chemico-Physical and Aggregation Properties. PLoS ONE, 2012, 7, e50027.	1.1	35
20	α-Synuclein Dimers Impair Vesicle Fission during Clathrin-Mediated Synaptic Vesicle Recycling. Frontiers in Cellular Neuroscience, 2017, 11, 388.	1.8	34
21	Extracellular clusterin limits the uptake of αâ€synuclein fibrils by murine and human astrocytes. Glia, 2021, 69, 681-696.	2.5	32
22	Effects of Trehalose on Thermodynamic Properties of Alpha-synuclein Revealed through Synchrotron Radiation Circular Dichroism. Biomolecules, 2015, 5, 724-734.	1.8	26
23	Singleâ€Molecule‣evel Evidence for the Osmophobic Effect. Angewandte Chemie - International Edition, 2011, 50, 4394-4397.	7.2	25
24	Determination of ATP, ADP, and AMP Levels by Reversed-Phase High-Performance Liquid Chromatography in Cultured Cells. Methods in Molecular Biology, 2019, 1925, 223-232.	0.4	20
25	High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy. Biophysical Journal, 2017, 113, 1685-1696.	0.2	16
26	Observing the osmophobic effect in action at the single molecule level. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2214-2223.	1.5	15
27	Worm-Like Ising Model for Protein Mechanical Unfolding under the Effect of Osmolytes. Biophysical Journal, 2012, 102, 342-350.	0.2	13
28	Fibrils of α-Synuclein Abolish the Affinity of Cu ²⁺ -Binding Site to His50 and Induce Hopping of Cu ²⁺ lons in the Termini. Inorganic Chemistry, 2019, 58, 10920-10927.	1.9	12
29	Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature. Archives of Biochemistry and Biophysics, 2017, 627, 46-55.	1.4	11
30	Cloning, expression, purification, and spectroscopic analysis of the fragment 57–102 of human α-synuclein. Protein Expression and Purification, 2005, 39, 90-96.	0.6	8
31	Peptides as Modulators of α-Synuclein Aggregation. Protein and Peptide Letters, 2015, 22, 354-361.	0.4	7
32	The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Research, 2022, 1778, 147781.	1.1	7
33	Single-Molecule Force Spectroscopy of Chimeric Polyprotein Constructs Containing Intrinsically Disordered Domains. , 2012, 896, 47-56.		5
34	Interactions of metal ions with \hat{l}_{\pm} synuclein and amyloid \hat{l}^2 peptides. , 2014, , .		0