Uwe Czarnetzki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5183030/publications.pdf

Version: 2024-02-01

66315 79644 6,251 167 42 73 citations h-index g-index papers 168 168 168 2842 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal Physics D: Applied Physics, 2017, 50, 323001.	1.3	710
2	The 2012 Plasma Roadmap. Journal Physics D: Applied Physics, 2012, 45, 253001.	1.3	511
3	On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric. Journal Physics D: Applied Physics, 2008, 41, 165202.	1.3	195
4	Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas. Applied Physics Letters, 2006, 89, 261502.	1.5	159
5	PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect. Journal Physics D: Applied Physics, 2009, 42, 025205.	1.3	157
6	Self-excitation of the plasma series resonance in radio-frequency discharges: An analytical description. Physics of Plasmas, 2006, 13, 123503.	0.7	156
7	The electrical asymmetry effect in capacitively coupled radio frequency discharges – measurements of dc self bias, ion energy and ion flux. Journal Physics D: Applied Physics, 2009, 42, 092005.	1.3	147
8	Space and time resolved electric field measurements in helium and hydrogen RF-discharges. Plasma Sources Science and Technology, 1999, 8, 230-248.	1.3	130
9	Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering. Journal Physics D: Applied Physics, 2009, 42, 045208.	1.3	125
10	Space and phase resolved plasma parameters in an industrial dual-frequency capacitively coupled radio-frequency discharge. Journal Physics D: Applied Physics, 2007, 40, 7008-7018.	1.3	116
11	Quenching rate constants for reactions of Ar(4p′[1/2]0,â€,4p[1/2]0,â€,4p[3/2]2, and 4p[5/2]2) atoms with 22 reagent gases. Journal of Chemical Physics, 2001, 115, 3144-3154.	1.2	104
12	The effect of secondary electrons on the separate control of ion energy and flux in dual-frequency capacitively coupled radio frequency discharges. Applied Physics Letters, 2010, 97, .	1.5	95
13	Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments. Plasma Physics and Controlled Fusion, 2012, 54, 124003.	0.9	95
14	Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges. Applied Physics Letters, 2009, 94, .	1.5	91
15	The electrical asymmetry effect in capacitively coupled radio-frequency discharges. Plasma Sources Science and Technology, 2011, 20, 024010.	1.3	89
16	Stochastic heating in asymmetric capacitively coupled RF discharges. Journal Physics D: Applied Physics, 2008, 41, 195212.	1.3	85
17	The electrical asymmetry effect in multi-frequency capacitively coupled radio frequency discharges. Plasma Sources Science and Technology, 2011, 20, 015017.	1.3	85
18	Sensitive Electric Field Measurement by Fluorescence-Dip Spectroscopy of Rydberg States of Atomic Hydrogen. Physical Review Letters, 1998, 81, 4592-4595.	2.9	77

#	Article	IF	Citations
19	Optimization of the electrical asymmetry effect in dual-frequency capacitively coupled radio frequency discharges: Experiment, simulation, and model. Journal of Applied Physics, 2009, 106, .	1.1	77
20	Secondary electrons in dual-frequency capacitive radio frequency discharges. Plasma Sources Science and Technology, 2011, 20, 045007.	1.3	77
21	Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures. Journal Physics D: Applied Physics, 2008, 41, 105214.	1.3	74
22	Different modes of electron heating in dual-frequency capacitively coupled radio frequency discharges. Plasma Sources Science and Technology, 2009, 18, 034011.	1.3	73
23	Experimental and modeling analysis of fast ionization wave discharge propagation in a rectangular geometry. Physics of Plasmas, $2011, 18, \ldots$	0.7	73
24	Electron beams in asymmetric capacitively coupled radio frequency discharges at low pressures. Journal Physics D: Applied Physics, 2008, 41, 042003.	1.3	69
25	Numerical Modeling of Electron Beams Accelerated by the Radio Frequency Boundary Sheath. IEEE Transactions on Plasma Science, 2008, 36, 1404-1405.	0.6	69
26	Phase resolved optical emission spectroscopy: a non-intrusive diagnostic to study electron dynamics in capacitive radio frequency discharges. Journal Physics D: Applied Physics, 2010, 43, 124016.	1.3	69
27	Diagnostics of the plasma series resonance effect in radio-frequency discharges. Journal of Physics: Conference Series, 2007, 86, 012010.	0.3	56
28	The Electrical Asymmetry Effect - A novel and simple method for separate control of ion energy and flux in capacitively coupled RF discharges. Journal of Physics: Conference Series, 2009, 162, 012010.	0.3	54
29	Control of plasma properties in capacitively coupled oxygen discharges via the electrical asymmetry effect. Journal Physics D: Applied Physics, 2011, 44, 285205.	1.3	54
30	Neutral gas depletion mechanisms in dense low-temperature argon plasmas. Journal Physics D: Applied Physics, 2008, 41, 035208.	1.3	53
31	Coupling effects in inductive discharges with radio frequency substrate biasing. Applied Physics Letters, 2012, 100, .	1.5	52
32	Plasma ionization through wave-particle interaction in a capacitively coupled radio-frequency discharge. Physics of Plasmas, 2007, 14, 034505.	0.7	49
33	Excitation dynamics in electrically asymmetric capacitively coupled radio frequency discharges: experiment, simulation, and model. Plasma Sources Science and Technology, 2010, 19, 045028.	1.3	49
34	Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges. Journal Physics D: Applied Physics, 2010, 43, 062001.	1.3	48
35	Electron Beams in Capacitively Coupled Radio-Frequency Discharges. IEEE Transactions on Plasma Science, 2008, 36, 1400-1401.	0.6	47
36	The electrical asymmetry effect in geometrically asymmetric capacitive radio frequency plasmas. Journal of Applied Physics, 2012, 112, .	1.1	46

#	Article	IF	Citations
37	The effect of the driving frequencies on the electrical asymmetry of dual-frequency capacitively coupled plasmas. Journal Physics D: Applied Physics, 2012, 45, 465205.	1.3	46
38	The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges. Journal Physics D: Applied Physics, 2013, 46, 175205.	1.3	46
39	Sources and sinks of CF and CF2 in a cc-RF CF4-plasma under various conditions. Plasma Sources Science and Technology, 2005, 14, 1-11.	1.3	44
40	Making a geometrically asymmetric capacitive rf discharge electrically symmetric. Applied Physics Letters, 2011, 98, .	1.5	44
41	Power absorption in electrically asymmetric dual frequency capacitive radio frequency discharges. Physics of Plasmas, 2011, 18, 013503.	0.7	44
42	Comparison of various two-photon excitation schemes for laser-induced fluorescence spectroscopy in atomic hydrogen. Journal of the Optical Society of America B: Optical Physics, 1994, 11, 2155.	0.9	43
43	Laser spectroscopic electric field measurement in krypton. New Journal of Physics, 2007, 9, 18-18.	1.2	40
44	Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging. Journal of Applied Physics, 1999, 85, 696-702.	1.1	38
45	Phase resolved measurement of anisotropic electron velocity distribution functions in a radio-frequency discharge. Journal Physics D: Applied Physics, 2008, 41, 082003.	1.3	38
46	Charge dynamics in capacitively coupled radio frequency discharges. Journal Physics D: Applied Physics, 2010, 43, 225201.	1.3	38
47	Effect of structured electrodes on heating and plasma uniformity in capacitive discharges. Journal Physics D: Applied Physics, 2013, 46, 505202.	1.3	38
48	On the OES line-ratio technique in argon and argon-containing plasmas. Journal Physics D: Applied Physics, 2014, 47, 445201.	1.3	38
49	Deposition of microcrystalline intrinsic silicon by the Electrical Asymmetry Effect technique. Vacuum, 2013, 87, 114-118.	1.6	37
50	Generation of vacuum-ultraviolet radiation inH2by nonlinear optical processes near theEF- andB-state resonances. Physical Review A, 1991, 44, 7530-7546.	1.0	36
51	Energy analysis of hyperthermal hydrogen atoms generated through surface neutralisation of ions. Europhysics Letters, 2005, 72, 235-241.	0.7	36
52	Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen. Journal Physics D: Applied Physics, 2009, 42, 092003.	1.3	36
53	Plasma boundary sheath in the afterglow of a pulsed inductively coupled RF plasma. Plasma Sources Science and Technology, 2007, 16, 355-363.	1.3	33
54	Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: I. Electron, Rydberg molecules and He (2 ³ S) densities. Plasma Sources Science and Technology, 2016, 25, 054003.	1.3	33

#	Article	IF	Citations
55	Prevention of ion flux lateral inhomogeneities in large area capacitive radio frequency plasmas via the electrical asymmetry effect. Applied Physics Letters, 2015, 106, .	1.5	32
56	Determination of the electric field strength of filamentary DBDs by CARS-based four-wave mixing. Plasma Sources Science and Technology, 2016, 25, 054002.	1.3	32
57	The effect of the pulse repetition rate on the fast ionization wave discharge. Journal Physics D: Applied Physics, 2018, 51, 225202.	1.3	31
58	Foundations of capacitive and inductive radio-frequency discharges. Plasma Sources Science and Technology, 2021, 30, 024001.	1.3	31
59	Thomson scattering in low temperature helium plasmas of a magnetic multipole plasma source. Journal Physics D: Applied Physics, 2004, 37, 2677-2685.	1.3	30
60	A xenon collisional-radiative model applicable to electric propulsion devices: II. Kinetics of the 6s, 6p, and 5d states of atoms and ions in Hall thrusters. Plasma Sources Science and Technology, 2019, 28, 105005.	1.3	30
61	Nonlinear optical techniques for plasma diagnostics. IEEE Transactions on Plasma Science, 1998, 26, 1502-1513.	0.6	29
62	Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization. Plasma Physics and Controlled Fusion, 2005, 47, A353-A360.	0.9	29
63	Analytical model for the radio-frequency sheath. Physical Review E, 2013, 88, 063101.	0.8	29
64	First measurements of the temporal evolution of the plasma density in HiPIMS discharges using THz time domain spectroscopy. Plasma Sources Science and Technology, 2018, 27, 035006.	1.3	29
65	Plasma sheath electric field strengths above a grooved electrode in a parallel-plate radio-frequency discharge. IEEE Transactions on Plasma Science, 1999, 27, 70-71.	0.6	28
66	Possibilities of determining non-Maxwellian EEDFs from the OES line-ratios in low-pressure capacitive and inductive plasmas containing argon and krypton. Plasma Sources Science and Technology, 2012, 21, 024003.	1.3	28
67	Recombination and enhanced metastable repopulation in the argon afterglow. Physical Review E, 2012, 85, 056401.	0.8	28
68	Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion. Plasma Sources Science and Technology, 2017, 26, 055003.	1.3	26
69	Evaluation of the Electrical Asymmetry Effect by spectroscopic measurements of capacitively coupled discharges and silicon thin film depositions. Thin Solid Films, 2015, 574, 60-65.	0.8	25
70	An atmospheric pressure self-pulsing micro thin-cathode discharge. Journal Physics D: Applied Physics, 2011, 44, 125204.	1.3	24
71	Ignition of a nanosecond-pulsed near atmospheric pressure discharge in a narrow gap. Journal Physics D: Applied Physics, 2011, 44, 165202.	1.3	24
72	Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques). Plasma Sources Science and Technology, 2000, 9, 477-491.	1.3	23

#	Article	IF	CITATIONS
73	Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules. Applied Physics Letters, 1997, 71, 3796-3798.	1.5	21
74	Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding. Applied Optics, 1998, 37, 8453.	2.1	21
75	A planar inductively coupled radio-frequency magnetic neutral loop discharge. Journal Physics D: Applied Physics, 2007, 40, 4508-4514.	1.3	21
76	The influence of the relative phase between the driving voltages on electron heating in asymmetric dual frequency capacitive discharges. Plasma Sources Science and Technology, 2010, 19, 045001.	1.3	21
77	Determination of electron densities by diode-laser absorption spectroscopy in a pulsed ICP. Plasma Sources Science and Technology, 2011, 20, 015022.	1.3	21
78	Kinetic simulation of a nanosecond-pulsed hydrogen microdischarge. Applied Physics Letters, 2011, 98, .	1.5	21
79	Electric field vector measurements in a surface ionization wave discharge. Plasma Sources Science and Technology, 2015, 24, 055017.	1.3	21
80	Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: II. Rydberg molecules kinetics. Plasma Sources Science and Technology, 2016, 25, 054004.	1.3	21
81	Electric field measurements in a He:N ₂ nanosecond pulsed discharge with sub-ns time resolution. Journal Physics D: Applied Physics, 2021, 54, 055201.	1.3	21
82	Ion distribution functions at the electrodes of capacitively coupled high-pressure hydrogen discharges. Plasma Sources Science and Technology, 2014, 23, 015001.	1.3	20
83	Spatial structures of plasma parameters in a magnetic neutral loop discharge. Plasma Sources Science and Technology, 2007, 16, 543-548.	1.3	19
84	Influence of a phase-locked RF substrate bias on the E- to H-mode transition in an inductively coupled plasma. Plasma Sources Science and Technology, 2015, 24, 044006.	1.3	19
85	Electric field measurements on plasma bullets in N ₂ using four-wave mixing. Plasma Sources Science and Technology, 2017, 26, 115006.	1.3	19
86	Investigations on ionic processes and dynamics in the sheath region of helium and hydrogen discharges by laser spectroscopic electric field measurements. Applied Physics A: Materials Science and Processing, 2001, 72, 509-521.	1.1	18
87	Observation of Fast Hydrogen Atoms Formed by Ion Bombarding of Surfaces. Contributions To Plasma Physics, 2002, 42, 596-602.	0.5	18
88	A hybrid, one-dimensional model of capacitively coupled radio-frequency discharges. Journal Physics D: Applied Physics, 2008, 41, 225208.	1.3	18
89	Development of Fast Ionization Wave Discharges at High Pulse Repetition Rates. Plasma Chemistry and Plasma Processing, 2012, 32, 471-493.	1.1	17
90	Plasma dynamics in an inductively coupled magnetic neutral loop discharge. Plasma Sources Science and Technology, 2008, 17, 024022.	1.3	16

#	Article	IF	Citations
91	A discharge with a magnetic X-point as a negative hydrogen ion source. AIP Conference Proceedings, 2011, , .	0.3	16
92	Field reversals in electrically asymmetric capacitively coupled radio-frequency discharges in hydrogen. Journal Physics D: Applied Physics, 2013, 46, 435201.	1.3	16
93	Transport control of dust particles via the electrical asymmetry effect: experiment, simulation and modelling. Journal Physics D: Applied Physics, 2013, 46, 245202.	1.3	16
94	Plasma diagnostics by laser spectroscopic electric field measurement. Pure and Applied Chemistry, 2005, 77, 345-358.	0.9	15
95	Electron cooling in decaying low-pressure plasmas. Physical Review E, 2012, 85, 046407.	0.8	15
96	Investigations on the afterglow of a thin cathode discharge in argon at atmospheric pressure. Journal Physics D: Applied Physics, 2010, 43, 295201.	1.3	13
97	Hydrogen Discharge With a Magnetic \$X\$ -Point. IEEE Transactions on Plasma Science, 2011, 39, 2538-2539.	0.6	13
98	Rotational and vibrational temperatures in a hydrogen discharge with a magnetic X-point. Physics of Plasmas, 2012, 19, 123503.	0.7	13
99	2D collisional-radiative model for non-uniform argon plasmas: with or without  escape factor'. Journal Physics D: Applied Physics, 2015, 48, 085201.	1.3	13
100	Determination of state-to-state electron-impact rate coefficients between Ar excited states: a review of combined diagnostic experiments in afterglow plasmas. Plasma Sources Science and Technology, 2016, 25, 043003.	1.3	13
101	Measurement of plasma densities by dual frequency multichannel boxcar THz time domain spectroscopy. Journal Physics D: Applied Physics, 2017, 50, 245202.	1.3	13
102	Twoâ€photon laserâ€induced fluorescence measurements of absolute atomic hydrogen densities and powder formation in a silane discharge. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 831-834.	0.9	12
103	Vibrational CARS measurements in a near-atmospheric pressure plasma jet in nitrogen: I. Measurement procedure and results. Journal Physics D: Applied Physics, 2021, 54, 305204.	1.3	12
104	Electronic excitation in metals through hyperthermal atoms. Journal Physics D: Applied Physics, 2006, 39, 5224-5229.	1.3	11
105	Electric field measurements in near-atmospheric pressure nitrogen and air based on a four-wave mixing scheme. Journal of Physics: Conference Series, 2010, 227, 012040.	0.3	11
106	Wave propagation and noncollisional heating in neutral loop and helicon discharges. Physics of Plasmas, $2011,18,.$	0.7	10
107	Escape factors for Paschen 2p–1s emission lines in low-temperature Ar, Kr, and Xe plasmas. Journal Physics D: Applied Physics, 2016, 49, 225204.	1.3	10
108	Christiansen filters for the far ultraviolet: an old spectral device in a new light. Applied Optics, 1987, 26, 4788.	2.1	9

#	Article	IF	CITATIONS
109	Phase and space resolved optical emission spectroscopic investigations of an inductively coupled RF plasma using an imaging acousto-optic spectrometer. Surface and Coatings Technology, 2005, 200, 859-861.	2.2	9
110	Instabilities in Capacitively Coupled Radio-Frequency Discharges. IEEE Transactions on Plasma Science, 2008, 36, 1402-1403.	0.6	9
111	Rydberg state, metastable, and electron dynamics in the low-pressure argon afterglow. Plasma Sources Science and Technology, 2015, 24, 065001.	1.3	9
112	Line integration and spatial resolution in optical imaging of plasmas. Journal Physics D: Applied Physics, 2015, 48, 385201.	1.3	9
113	Starlike Structures in Discharges With a Magnetic X-Point. IEEE Transactions on Plasma Science, 2011, 39, 2466-2467.	0.6	8
114	Sheath-to-sheath transport of dust particles in a capacitively coupled discharge. Plasma Sources Science and Technology, 2012, 21, 032001.	1.3	8
115	Inductively coupled array (INCA) discharge. Plasma Sources Science and Technology, 2018, 27, 105010.	1.3	8
116	Measurement of quenching coefficients and development of calibration methods for quantitative spectroscopy of plasmas at elevated pressures. , 2002, 4460, 122.		7
117	Temporally resolved optical emission spectroscopic investigations on a nanosecond self-pulsing micro-thin-cathode discharge. Plasma Sources Science and Technology, 2012, 21, 045015.	1.3	7
118	Comment on: Measurement of the force exerted on the surface of an object immersed in a plasma. European Physical Journal D, 2015, 69, 1.	0.6	7
119	Thomson scattering of plasma turbulence on PSI-2. Nuclear Materials and Energy, 2017, 12, 1253-1258.	0.6	7
120	Measurement of the Magnetic Field in a Linear Magnetized Plasma by Tunable Diode Laser Absorption Spectroscopy. Atoms, 2019, 7, 48.	0.7	7
121	Time evolution of CO ₂ ro-vibrational excitation in a nanosecond discharge measured with laser absorption spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 365201.	1.3	7
122	Collisional deactivation of two-photon-excited Ar (4p; $J = 0, 2$) states by H2 and several hydrocarbon and fluorine containing molecules. EPJ Applied Physics, 1998, 4, 239-242.	0.3	7
123	Observation of stimulated hyper-Raman scattering inH2. Physical Review A, 1989, 40, 6120-6123.	1.0	6
124	Stimulated IR- and vacuum-UV emission following two-photon-excitation of molecular hydrogen using an ArF laser. Applied Physics B, Photophysics and Laser Chemistry, 1989, 48, 37-40.	1.5	6
125	Novel scheme for atomic hydrogen detection by doubleâ€resonant fourâ€wave mixing. Review of Scientific Instruments, 1995, 66, 587-589.	0.6	6
126	Argon ion velocity distributions in a helicon discharge measured by laser induced fluorescence. Journal of Physics: Conference Series, 2010, 227, 012035.	0.3	6

#	Article	IF	CITATIONS
127	Retrospective on â€~The 2012 Plasma Roadmap'. Journal Physics D: Applied Physics, 2016, 49, 431001.	1.3	6
128	Fluorescence spectroscopy of low-Z-materials: Application of Raman-converted VUV-radiation to beryllium and oxygen. Journal of Nuclear Materials, 1987, 145-147, 438-442.	1.3	5
129	Two Step Laser Induced Fluorescence: An Enhanced Detection Method of Rydberg-State Species for Electric Field Measurement in Glow Discharge Plasmas. Japanese Journal of Applied Physics, 2000, 39, 299-300.	0.8	5
130	Helicon-Type Discharge With a Flat Spiral Antenna. IEEE Transactions on Plasma Science, 2008, 36, 1406-1407.	0.6	5
131	Collisionless wave damping in neutral loop discharges. Plasma Physics and Controlled Fusion, 2009, 51, 124040.	0.9	5
132	Collisionless electron heating in periodic arrays of inductively coupled plasmas. Physics of Plasmas, 2014, 21, 123508.	0.7	5
133	Vibrational CARS measurements in a near-atmospheric pressure plasma jet in nitrogen: II. Analysis. Journal Physics D: Applied Physics, 2021, 54, 305205.	1.3	5
134	Nanosecond resolved ro-vibrational CO ₂ excitation measurement. Journal Physics D: Applied Physics, 2021, 54, 34LT02.	1.3	5
135	Neodymium: glass laser system with a large tuning range. Applied Optics, 1986, 25, 2912.	2.1	4
136	Laser-induced fluorescence spectroscopy of beryllium vapour at UV and VUV wavelengths. Journal Physics D: Applied Physics, 1988, 21, 246-250.	1.3	4
137	The gain and loss of energy by electrons in the RF-CCP sheath. Journal Physics D: Applied Physics, 2009, 42, 085205.	1.3	4
138	Formation of carbon nanoparticle using Ar+CH4high pressure nanosecond discharges. Journal of Physics: Conference Series, 2014, 518, 012020.	0.3	4
139	Kinetic model for stochastic heating in the INCA discharge. Plasma Sources Science and Technology, 2018, 27, 105011.	1.3	4
140	Perturbation treatment of multilevel rate equations for laser-induced fluorescence spectroscopy. Applied Optics, 1987, 26, 1622.	2.1	3
141	A novel probe for spatially resolved emission spectroscopy in plasmas. Plasma Sources Science and Technology, 2010, 19, 045008.	1.3	3
142	Ion Distribution Functions in Electrically Asymmetric Capacitively Coupled Radio-Frequency Discharges in Hydrogen. IEEE Transactions on Plasma Science, 2014, 42, 2376-2377.	0.6	3
143	Self-absorption method in combination with an optical probe: a possibility to determine the radial density profile of rare-gas metastables in low-temperature plasmas. Plasma Sources Science and Technology, 2015, 24, 035023.	1.3	3
144	Reply to Comment on â€~Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion'. Plasma Sources Science and Technology, 2018, 27, 038002.	1.3	3

#	Article	IF	Citations
145	Analytical plasma impedance model of dual frequency capacitive discharges with ion dynamics. Plasma Sources Science and Technology, 2019, 28, 035004.	1.3	3
146	Observation of unexpected energy levels in molecular hydrogen and ortho-para energy transfer. Physical Review Letters, 1990, 64, 2763-2766.	2.9	2
147	The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics. Journal Physics D: Applied Physics, 2010, 43, 120301.	1.3	2
148	Electric field measurements at near-atmospheric pressure by coherent Raman scattering of laser beams. Journal of Physics: Conference Series, 2010, 227, 012018.	0.3	2
149	Spatially and temporally resolved optical spectroscopic investigations inside a self-pulsing micro thin-cathode discharge. Journal Physics D: Applied Physics, 2011, 44, 252001.	1.3	2
150	Dust Hour Glass in a Capacitive RF Discharge. IEEE Transactions on Plasma Science, 2014, 42, 2672-2673.	0.6	2
151	The Glow in a Three-Body Recombination Dominated Afterglow. IEEE Transactions on Plasma Science, 2014, 42, 2388-2389.	0.6	2
152	Zeeman-resolved TDLAS using metastable levels of Ar in the weakly magnetized plasma of the linear plasma device PSI-2. Journal Physics D: Applied Physics, 2021, 54, 395001.	1.3	2
153	Application of Non-Linear Optical Methods to Plasma Diagnostics. European Physical Journal Special Topics, 1997, 07, C4-175-C4-186.	0.2	2
154	Dynamics of a Nanosecond High-Voltage Microdischarge. IEEE Transactions on Plasma Science, 2011, 39, 2688-2689.	0.6	1
155	Reply to â€~Comment on "Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterionâ€â€™. Plasma Sources Science and Technology, 2019, 28, 078002.	1.3	1
156	Numerical modeling of plasma sources with a periodic structure. AIP Conference Proceedings, 2019, , .	0.3	1
157	Plasma parameters and tungsten sputter rates in a high-frequency CCP. Physics of Plasmas, 2022, 29, 043511.	0.7	1
158	Diagnostics for the Dynamics of Power Dissipation in Technologically used Plasmas. AIP Conference Proceedings, 2006, , .	0.3	0
159	An Ultrahigh Current Density Micro Discharge. IEEE Transactions on Plasma Science, 2011, 39, 2682-2683.	0.6	0
160	Pulsed high-power plasmas for deposition of nanostructured thin films. Journal Physics D: Applied Physics, 2013, 46, 080301.	1.3	0
161	Electron heating, mode transitions, and asymmetry effects in dusty single- and dual-frequency capacitive discharges. , 2014 , , .		0
162	Ion flux uniformity in large area capacitively coupled dual-frequency discharges. , 2014, , .		0

#	Article	IF	CITATIONS
163	Comment on the paper $\hat{a} \in \mathbb{T}$ he impact of Langmuir probe geometries on electron current collection and the integral relation for obtaining electron energy distribution functions $\hat{a} \in \mathbb{T}$. Plasma Sources Science and Technology, 2016, 25, 048001.	1.3	0
164	Message from the editor in chief. Plasma Sources Science and Technology, 2019, 28, 010401.	1.3	0
165	Lock-in technique for precise measurement of ion distribution functions. Journal Physics D: Applied Physics, 2021, 54, 305202.	1.3	O
166	Operation of the inductively coupled array (INCA) discharge as a para-array. Journal Physics D: Applied Physics, 2021, 54, 385204.	1.3	0
167	Message from the Editor in Chief. Plasma Sources Science and Technology, 2020, 29, 120201.	1.3	0