Janos Porszasz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5182967/publications.pdf

Version: 2024-02-01

94269 74018 6,018 116 37 75 h-index citations g-index papers 117 117 117 5628 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The level and tempo of children???s physical activities: an observational study. Medicine and Science in Sports and Exercise, 1995, 27, 1033-1041.	0.2	746
2	An official European Respiratory Society statement on physical activity in COPD. European Respiratory Journal, 2014, 44, 1521-1537.	3.1	398
3	Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease American Journal of Respiratory and Critical Care Medicine, 1997, 155, 1541-1551.	2.5	384
4	Effects of Testosterone and Resistance Training in Men with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 870-878.	2.5	332
5	Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. European Respiratory Journal, 2016, 47, 429-460.	3.1	311
6	Benefits of Supplemental Oxygen in Exercise Training in Nonhypoxemic Chronic Obstructive Pulmonary Disease Patients. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 1034-1042.	2.5	303
7	Dose-response effect of oxygen on hyperinflation and exercise endurance in nonhypoxaemic COPD patients. European Respiratory Journal, 2001, 18, 77-84.	3.1	272
8	Exercise Training Decreases Ventilatory Requirements and Exercise-Induced Hyperinflation at Submaximal Intensities in Patients With COPD. Chest, 2005, 128, 2025-2034.	0.4	210
9	Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy. European Journal of Applied Physiology and Occupational Physiology, 1995, 70, 487-492.	1.2	181
10	Effects of hypoxic hypoxia on O ₂ uptake and heart rate kinetics during heavy exercise. Journal of Applied Physiology, 1996, 81, 2500-2508.	1.2	169
11	Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise. Journal of Applied Physiology, 1994, 76, 1462-1467.	1.2	167
12	A Treadmill Ramp Protocol Using Simultaneous Changes in Speed and Grade. Medicine and Science in Sports and Exercise, 2003, 35, 1596-1603.	0.2	124
13	Effect of Hyperoxia on Gas Exchange and Lactate Kinetics Following Exercise Onset in Nonhypoxemic COPD Patients. Chest, 2002, 121, 393-400.	0.4	106
14	Aclidinium bromide improves exercise endurance and lung hyperinflation in patients with moderate to severe COPD. Respiratory Medicine, 2011, 105, 580-587.	1.3	96
15	Gas exchange responses to continuous incremental cycle ergometry exercise in primary pulmonary hypertension in humans. European Journal of Applied Physiology, 2000, 83, 63-70.	1.2	75
16	Methodology for Using Long-Term Accelerometry Monitoring to Describe Daily Activity Patterns in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2009, 6, 121-129.	0.7	75
17	Skeletal muscle adaptations to testosterone and resistance training in men with COPD. Journal of Applied Physiology, 2007, 103, 1299-1310.	1.2	73
18	Supervised high intensity continuous and interval training vs. self-paced training in COPD. Respiratory Medicine, 2007, 101, 2297-2304.	1.3	69

#	Article	IF	Citations
19	Skeletal muscle oxygenation during constant work rate exercise. Medicine and Science in Sports and Exercise, 1995, 27, 512???519.	0.2	67
20	Exhaled Nitric Oxide During Exercise in Primary Pulmonary Hypertension and Pulmonary Fibrosis. Chest, 1997, 111, 44-50.	0.4	67
21	Low physical performance in obese adolescent boys with metabolic syndrome. International Journal of Obesity, 2001, 25, 966-970.	1.6	67
22	Physiological responses to linear treadmill and cycle ergometer exercise in COPD. European Respiratory Journal, 2009, 34, 605-615.	3.1	67
23	Diffusing Capacity of Carbon Monoxide inÂAssessment of COPD. Chest, 2019, 156, 1111-1119.	0.4	58
24	Disease Progression Modeling in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 294-302.	2.5	56
25	Evaluation of a symmetrically disposed Pitot tube flowmeter for measuring gas flow during exercise. Journal of Applied Physiology, 1994, 77, 2659-2665.	1.2	55
26	Daily physical activity and physical function in adult maintenance hemodialysis patients. Journal of Cachexia, Sarcopenia and Muscle, 2014, 5, 209-220.	2.9	52
27	Effects of Tiotropium on Hyperinflation and Treadmill Exercise Tolerance in Mild to Moderate Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2014, 11, 1351-1361.	1.5	51
28	Long-term Comparative Immunogenicity of Protein Conjugate and Free Polysaccharide Pneumococcal Vaccines in Chronic Obstructive Pulmonary Disease. Clinical Infectious Diseases, 2012, 55, e35-e44.	2.9	50
29	Influence of Lightweight Ambulatory Oxygen on Oxygen Use and Activity Patterns of COPD Patients Receiving Long-Term Oxygen Therapy. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2012, 9, 3-11.	0.7	50
30	Association between quality of life and anxiety, depression, physical activity and physical performance in maintenance hemodialysis patients. Chronic Diseases and Translational Medicine, 2016, 2, 110-119.	0.9	50
31	Reduction of Hyperinflation by Pharmacologic and Other Interventions. Proceedings of the American Thoracic Society, 2006, 3, 185-189.	3.5	49
32	Responses to constant work rate bicycle ergometry exercise in primary pulmonary hypertension: the effect of inhaled nitric oxide. Journal of the American College of Cardiology, 2000, 36, 547-556.	1.2	47
33	Femoral vascular occlusion and ventilation during recovery from heavy exercise. Respiration Physiology, 1993, 94, 137-150.	2.8	43
34	Relation Between Anxiety, Depression, and Physical Activity and Performance in Maintenance Hemodialysis Patients., 2014, 24, 252-260.		43
35	Gas exchange responses to constant work rate exercise in chronic cardiac failure Heart, 1994, 72, 150-155.	1.2	42
36	Non-linear cardiac output dynamics during ramp-incremental cycle ergometry. European Journal of Applied Physiology, 2005, 93, 634-639.	1.2	42

#	Article	IF	Citations
37	Six-Minute Walk Distance Predictors, Including CT Scan Measures, in the COPDGene Cohort. Chest, 2012, 141, 867-875.	0.4	41
38	The St. George's Respiratory Questionnaire Definition of Chronic Bronchitis May Be aÂBetter Predictor of COPD Exacerbations Compared With the Classic Definition. Chest, 2019, 156, 685-695.	0.4	40
39	A Novel Spirometric Measure Identifies Mild COPD Unidentified by Standard Criteria. Chest, 2016, 150, 1080-1090.	0.4	39
40	Association between the anaerobic threshold and the break-point in the double product/work rate relationship. European Journal of Applied Physiology, 1996, 75, 14-21.	1.2	37
41	Factors Affecting Daily Physical Activity and Physical Performance in Maintenance Dialysis Patients., 2015, 25, 217-222.		37
42	Reproducibility of NIRS assessment of muscle oxidative capacity in smokers with and without COPD. Respiratory Physiology and Neurobiology, 2017, 235, 18-26.	0.7	37
43	Relation of concavity in the expiratory flow-volume loop to dynamic hyperinflation during exercise in COPD. Respiratory Physiology and Neurobiology, 2016, 234, 79-84.	0.7	36
44	Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. Chest, 2018, 153, 65-76.	0.4	36
45	Physiologic Effects of an Ambulatory Ventilation System in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 334-342.	2.5	34
46	Selecting Constant Work Rates for Endurance Testing in COPD: The Role of the Power-Duration Relationship. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2014, 11, 131101114106009.	0.7	32
47	The Continuum of Physiological Impairment during Treadmill Walking in Patients with Mild-to-Moderate COPD: Patient Characterization Phase of a Randomized Clinical Trial. PLoS ONE, 2014, 9, e96574.	1.1	32
48	Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry. Journal of Applied Physiology, 2015, 118, 646-654.	1.2	32
49	Indicator dilution measurements of extravascular lung water: basic assumptions and observations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1023-L1031.	1.3	29
50	Dyspnea Postpulmonary Embolism From Physiological Dead Space Proportion and Stroke Volume Defects During Exercise. Chest, 2020, 157, 936-944.	0.4	29
51	Clarifying the equation for modeling of V̇ <scp>o</scp> ₂ kinetics above the lactate threshold. Journal of Applied Physiology, 2010, 109, 1283-1284.	1.2	25
52	Breath-by-breath quantification of progressive airflow limitation during exercise in COPD: A new method. Respiratory Medicine, 2010, 104, 389-396.	1.3	25
53	Testosterone and resistance training effects on muscle nitric oxide synthase isoforms in COPD men. Respiratory Medicine, 2012, 106, 269-275.	1.3	21
54	Skeletal muscle power and fatigue at the tolerable limit of ramp-incremental exercise in COPD. Journal of Applied Physiology, 2016, 121, 1365-1373.	1.2	21

#	Article	IF	CITATIONS
55	A New Bronchodilator Response Grading Strategy Identifies Distinct Patient Populations. Annals of the American Thoracic Society, 2019, 16, 1504-1517.	1.5	21
56	Counterpoint: Is an Increase in FEV 1 and/or FVC ≥ 12% of Control and ≥ 200 mL the Best Way to Assess Positive Bronchodilator Response? No. Chest, 2014, 146, 538-541.	0.4	20
57	Exhaled Breath Condensates: Analyzing the Expiratory Plume. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 803-804.	2.5	19
58	Skeletal muscle oxygenation during constant work rate exercise. Medicine and Science in Sports and Exercise, 1995, 27, 512-9.	0.2	19
59	Sinusoidal highâ€intensity exercise does not elicit ventilatory limitation in chronic obstructive pulmonary disease. Experimental Physiology, 2013, 98, 1102-1114.	0.9	18
60	Muscle Oxidative Capacity Is Reduced in Both Upper and Lower Limbs in COPD. Medicine and Science in Sports and Exercise, 2020, 52, 2061-2068.	0.2	18
61	Airborne Particulate Concentrations During and After Pulmonary Function Testing. Chest, 2021, 159, 1570-1574.	0.4	17
62	Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function. Chest, 2021, 160, 470-480.	0.4	17
63	Constant Work Rate Exercise Testing: A Tricky Measure of Exercise Tolerance. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2009, 6, 317-319.	0.7	16
64	Re-Defining Lower Limit of Normal for FEV1/FEV6, FEV1/FVC, FEV3/FEV6 and FEV3/FVC to Improve Detection of Airway Obstruction. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2014, 2, 94-102.	0.5	15
65	Noninvasive assessment of normality of VD/VT in clinical cardiopulmonary exercise testing utilizing incremental cycle ergometry. European Journal of Applied Physiology, 2013, 113, 33-40.	1.2	14
66	Cluster Analysis in Patients with GOLD 1 Chronic Obstructive Pulmonary Disease. PLoS ONE, 2015, 10, e0123626.	1.1	14
67	Patient Involvement in the Design of a Patient-Centered Clinical Trial to Promote Adherence to Supplemental Oxygen Therapy in COPD. Patient, 2016, 9, 271-279.	1.1	13
68	Equipment, measurements and quality control in clinical exercise testing., 2007,, 108-128.		13
69	The effect of fasting hyperinsulinaemia on physical fitness in obese children. European Journal of Pediatrics, 1990, 149, 570-573.	1.3	12
70	Biological quality control for cardiopulmonary exercise testing in multicenter clinical trials. BMC Pulmonary Medicine, 2016, 16, 13.	0.8	10
71	The effect of test modality on dynamic exercise biomarkers in children, adolescents, and young adults. Physiological Reports, 2019, 7, e14178.	0.7	9
72	Emphysema Progression and Lung Function Decline Among Angiotensin Converting Enzyme Inhibitors and Angiotensin-Receptor Blockade Users in the COPDGene Cohort. Chest, 2021, 160, 1245-1254.	0.4	9

#	Article	IF	Citations
73	Transcutaneous PCO ₂ for Exercise Gas Exchange Efficiency in Chronic Obstructive Pulmonary Disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2021, 18, 16-25.	0.7	9
74	Physiologic Insights from the COPD Genetic Epidemiology Study. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2019, 6, 256-266.	0.5	9
75	Effect of tiotropium on spontaneous expiratory flow–volume curves during exercise in GOLD 1-2 COPD. Respiratory Physiology and Neurobiology, 2018, 251, 8-15.	0.7	8
76	Musculoskeletal disorders among construction apprentices in Hungary. Central European Journal of Public Health, 2001, 9, 183-7.	0.4	8
77	Rebuttal From Drs Hansen and Porszasz. Chest, 2014, 146, 542-544.	0.4	7
78	Physiologic Effects of Oxygen Supplementation During Exercise in Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine, 2019, 40, 385-395.	0.8	7
79	The Association Between Lung Hyperinflation and Coronary Artery Disease in Smokers. Chest, 2021, 160, 858-871.	0.4	7
80	Equipment, measurements and quality control., 0,, 59-81.		7
81	Effect of Megestrol Acetate and Testosterone on Body Composition and Hormonal Responses in COPD Cachexia. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2016, 3, 389-397.	0.5	7
82	Identifying a Heart Rate Recovery Criterion After a 6-Minute Walk Test in COPD. International Journal of COPD, 2021, Volume 16, 2545-2560.	0.9	6
83	Assessment of Exhaled Breath Condensate pH. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 952-952.	2.5	5
84	Heart rate variability during constant work rate exercise at and above the critical power in patients with severe chronic obstructive pulmonary disease. Tzu Chi Medical Journal, 2011, 23, 42-45.	0.4	4
85	Reliability and Physiological Interpretation of Pulmonary Gas Exchange by "Circulatory Equivalents― in Chronic Heart Failure. Journal of the American Heart Association, 2018, 7, .	1.6	4
86	The effect of long-acting dual bronchodilator therapy on exercise tolerance, dynamic hyperinflation, and dead space during constant work rate exercise in COPD. Journal of Applied Physiology, 2021, 130, 2009-2018.	1.2	4
87	Why Conventional Exhaled Breath Condensate pH Studies Cannot Provide Reliable Estimates of Airway Acidification. Chest, 2011, 140, 1099.	0.4	3
88	Comment on 'The effect of temperature on exhaled breath condensate collection'. Journal of Breath Research, 2012, 6, 048001.	1.5	3
89	Effect of clonidine (catapresan, St-155) on sympathetic reflexes. Neuroscience Letters, 1977, 4, 281-286.	1.0	2
90	Current Status of Pulmonary Rehabilitation: Introductory Remarks on Pulmonary Rehabilitation, the Importance and the Practice. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 215-218.	0.7	2

#	Article	IF	Citations
91	Dynamic airway function during exercise in COPD assessed via impulse oscillometry before and after inhaled bronchodilators. Journal of Applied Physiology, 2021, 131, 326-338.	1.2	2
92	A randomized, crossover, placebo controlled, double-blind trial of the effects of tiotropium-olodaterol on neuromuscular performance during exercise in COPD. Journal of Applied Physiology, 2022, 132, 1145-1153.	1.2	2
93	Resting Physiologic Dead Space as Predictor of Postoperative Pulmonary Complications After Robotic-Assisted Lung Resection: A Pilot Study. Frontiers in Physiology, 0, 13, .	1.3	2
94	Exercise Tolerance in Asymptomatic Elderly Men With Fluoroscopically Detected Coronary Artery Calcification. Chest, 1998, 114, 1562-1569.	0.4	1
95	Results From A Multi-Center Cardiopulmonary Exercise Physiological Quality Control Protocol. , 2012, , .		1
96	Use of Transcutaneous Measurement of PaCO 2 in Determining Dead Space Ventilation During Exercise in Patients with COPD; a Pilot Study. Chest, 2015, 148, 901A.	0.4	1
97	Oxygen Uptake and Lactate Kinetics in Patients with Chronic Obstructive Pulmonary Disease during Heavy Intensity Exercise: Role of Pedaling Cadence. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 283-293.	0.7	1
98	Response. Chest, 2020, 158, 1781-1782.	0.4	1
99	Testosterone Supplementation during Respiratory Rehabilitation. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 399-400.	2.5	1
100	Incorrect calculation of breath-by-breath gas exchange following rejected breaths. Journal of Applied Physiology, 1995, 78, 1618-1619.	1.2	0
101	Irish thoracic society. Irish Journal of Medical Science, 1998, 167, 1-13.	0.8	0
102	<i>In Reference to</i> Continuous Laryngoscopy Exercise Test: A Method for Visualizing Laryngeal Dysfunction During Exercise. Laryngoscope, 2007, 117, 1508-1509.	1.1	0
103	Letter to the Editor Response. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2010, 7, 445-446.	0.7	0
104	Judging Bronchodilator Responses: Are Current Gudelines Acceptable?. Chest, 2013, 144, 700A.	0.4	0
105	Sex Differences in Physical Activity Levels and Dyspnea in Mild-to-Moderate COPD. Chest, 2013, 144, 691A.	0.4	0
106	Effects of Noninvasive Open Ventilator on the Tidal Volume and Inspiratory Effort During Exercise in Severe COPD. Chest, 2013, 144, 734A.	0.4	0
107	Diagnostic Value of Isolated Prebronchodilator FEV 3 /FEV 6 Abnormality in Early Undiagnosed COPD. Chest, 2015, 148, 749A.	0.4	0
108	BREATH BY BREATH DEAD SPACE TO TIDAL VOLUME RATIO CALCULATION USING VOLUMETRIC CAPNOGRAPHY DURING EXERCISE TO ASSESS THE EFFECT OF GLYCOPYRROLATE/FORMOTEROL VS PLACEBO ON GAS EXCHANGE EFFICIENCY IN COPD. Chest, 2019, 156, A157-A158.	0.4	0

#	Article	IF	CITATIONS
109	HEART RATE VARIABILITY ON 10-SECOND ECG AND RISK OF ACUTE EXACERBATIONS OF COPD: A SECONDARY ANALYSIS OF BLOCK COPD. Chest, 2021, 160, A1773-A1775.	0.4	O
110	Effects of Heliox Breathing on R-R Interval Variability at Rest and During Exercise in COPD. Medicine and Science in Sports and Exercise, 2004, 36, S210.	0.2	0
111	Use of Physiological Calibration to Validate Gas Exchange Measurements During Exercise. Medicine and Science in Sports and Exercise, 2004, 36, S27.	0.2	0
112	Effects of Heliox Breathing on R-R Interval Variability at Rest and During Exercise in COPD. Medicine and Science in Sports and Exercise, 2004, 36, S210.	0.2	0
113	L-Glutamine Therapy Increases Exercise Endurance of Sickle Cell Anemia Patients Blood, 2004, 104, 3729-3729.	0.6	0
114	L-Glutamine Therapy Improves Minute Ventilation of Sickle Cell Anemia Patients Blood, 2007, 110, 3783-3783.	0.6	0
115	The role of myostatin on skeletal muscle energy metabolism during rest and exercise. FASEB Journal, 2012, 26, lb788.	0.2	0
116	A new method for instantaneous quantification of leg muscle fatigue during cycle ergometry (LB797). FASEB Journal, 2014, 28, LB797.	0.2	0