
Shabir Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5182932/publications.pdf Version: 2024-02-01

SHARID HASSAN

#	Article	IF	CITATIONS
1	Emerging Biopolymerâ€Based Bioadhesives. Macromolecular Bioscience, 2022, 22, e2100340.	2.1	26
2	Enzymeâ€Mediated Alleviation of Peroxide Toxicity in Selfâ€Oxygenating Biomaterials. Advanced Healthcare Materials, 2022, 11, e2102697.	3.9	3
3	Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Advanced Drug Delivery Reviews, 2022, 184, 114197.	6.6	29
4	Tissue adhesives: From research to clinical translation. Nano Today, 2021, 36, 101049.	6.2	90
5	Engineering bioactive synthetic polymers for biomedical applications: a review with emphasis on tissue engineering and controlled release. Materials Advances, 2021, 2, 4447-4478.	2.6	40
6	Oxygen-Releasing Biomaterials: Current Challenges and Future Applications. Trends in Biotechnology, 2021, 39, 1144-1159.	4.9	44
7	Survival and Proliferation under Severely Hypoxic Microenvironments Using Cell-Laden Oxygenating Hydrogels. Journal of Functional Biomaterials, 2021, 12, 30.	1.8	7
8	Selfâ€Oxygenation of Tissues Orchestrates Fullâ€Thickness Vascularization of Living Implants. Advanced Functional Materials, 2021, 31, 2100850.	7.8	16
9	A Smartphoneâ€Enabled Portable Digital Light Processing 3D Printer. Advanced Materials, 2021, 33, e2102153.	11.1	45
10	A Smartphoneâ€Enabled Portable Digital Light Processing 3D Printer (Adv. Mater. 35/2021). Advanced Materials, 2021, 33, 2170271.	11.1	1
11	Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication, 2021, 13, 015014.	3.7	32
12	Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nature Communications, 2021, 12, 6600.	5.8	52
13	Liverâ€onâ€a hip Models of Fatty Liver Disease. Hepatology, 2020, 71, 733-740.	3.6	67
14	Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo. Nanomaterials, 2020, 10, 390.	1.9	138
15	Synthesis and characterization of Cu-Sn oxides nanoparticles via wire explosion method with surfactants, evaluation of in-vitro cytotoxic and antibacterial properties. Advanced Powder Technology, 2020, 31, 2337-2347.	2.0	2
16	Biomaterials for on-chip organ systems. , 2020, , 669-707.		5
17	Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue models in vitro. Biofabrication, 2020, 12, 045027.	3.7	20
18	Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 2019, 106, 100589.	16.0	72

SHABIR HASSAN

#	Article	IF	CITATIONS
19	A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications. Materials Science and Engineering C, 2019, 105, 110009.	3.8	13

Bioprinting: A Tumorâ \in onâ \in oâ \in Chip System with Bioprinted Blood and Lymphatic Vessel Pair (Adv. Funct.) Tj ETQq0.0 0 rgBT/Overlock

21	A miniaturized optical tomography platform for volumetric imaging of engineered living systems. Lab on A Chip, 2019, 19, 550-561.	3.1	14
22	Effective bioprinting resolution in tissue model fabrication. Lab on A Chip, 2019, 19, 2019-2037.	3.1	148
23	A Tumorâ€onâ€aâ€Chip System with Bioprinted Blood and Lymphatic Vessel Pair. Advanced Functional Materials, 2019, 29, 1807173.	7.8	121
24	Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy. Materials Science and Engineering C, 2019, 98, 930-938.	3.8	29
25	Microfluidic technologies for local drug delivery. , 2019, , 281-305.		5

Bioprinting: Aqueous Twoâ€Phase Emulsion Bioinkâ€Enabled 3D Bioprinting of Porous Hydrogels (Adv.) Tj ETQq0 0.0 rgBT /Oyerlock 10

27	Nanoparticles in tissue engineering: applications, challenges and prospects. International Journal of Nanomedicine, 2018, Volume 13, 5637-5655.	3.3	287
28	Pathologyâ€onâ€aâ€Chip: Mimicking Human Pathophysiology in Organâ€onâ€Chip Devices (Adv. Biosys. 10/201 Advanced Biology, 2018, 2, 1870092.	8). 3.0	1
29	Aqueous Twoâ€Phase Emulsion Bioinkâ€Enabled 3D Bioprinting of Porous Hydrogels. Advanced Materials, 2018, 30, e1805460.	11.1	217
30	Microfluidic Bioprinting: Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870322.	11.1	2
31	Permeability mapping of gelatin methacryloyl hydrogels. Acta Biomaterialia, 2018, 77, 38-47.	4.1	65
32	Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues. Advanced Materials, 2018, 30, e1706913.	11.1	199
33	Mimicking Human Pathophysiology in Organâ€onâ€Chip Devices. Advanced Biology, 2018, 2, 1800109.	3.0	48
34	Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics, 2017, 11, 044109.	1.2	120
35	Evolution and clinical translation of drug delivery nanomaterials. Nano Today, 2017, 15, 91-106.	6.2	196
36	Nanostructured Fibrous Membranes with Rose Spike-Like Architecture. Nano Letters, 2017, 17, 6235-6240.	4.5	72

3

SHABIR HASSAN

#	Article	IF	CITATIONS
37	Microfluidic-integrated DNA nanobiosensors. Biosensors and Bioelectronics, 2016, 85, 247-260.	5.3	58
38	Fighting Diabetes: Lessons from Xenotransplantation and Nanomedicine. Current Pharmaceutical Design, 2016, 22, 1494-1505.	0.9	1
39	pH-Jump Induced Leucine Zipper Folding beyond the Diffusion Limit. Journal of Physical Chemistry B, 2015, 119, 1425-1432.	1.2	35
40	Biophysicochemical Perspective of Nanoparticle Compatibility: A Critically Ignored Parameter in Nanomedicine. Journal of Nanoscience and Nanotechnology, 2014, 14, 402-414.	0.9	37
41	Response of Villin Headpiece-Capped Gold Nanoparticles to Ultrafast Laser Heating. Journal of Physical Chemistry B, 2014, 118, 7954-7962.	1.2	26
42	Photocontrol of Reversible Amyloid Formation with a Minimal-Design Peptide. Journal of Physical Chemistry B, 2012, 116, 8961-8973.	1.2	19
43	Heterodyne detected Transient Grating UV/VIS-pump IR-probe measurements of energy transport through proteins. , 2012, , .		0
44	Cytotoxicity and Cellular Internalization Studies of Biogenic Gold Nanotriangles in Animal Cell Lines. International Journal of Green Nanotechnology, 2011, 3, 251-263.	0.3	12