Marek Szostak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5182663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cork-wood hybrid filler system for polypropylene and poly(lactic acid) based injection molded composites. Structure evaluation and mechanical performance. Composites Part B: Engineering, 2019, 163, 655-668.	12.0	55
2	Rotational Molding of Linear Low-Density Polyethylene Composites Filled with Wheat Bran. Polymers, 2020, 12, 1004.	4.5	44
3	Development and characterization of poly(ethylene terephthalate) based injection molded self-reinforced composites. Direct reinforcement by overmolding the composite inserts. Materials and Design, 2018, 153, 273-286.	7.0	41
4	Rotational molding of biocomposites with addition of buckwheat husk filler. Structure-property correlation assessment for materials based on polyethylene (PE) and poly(lactic acid) PLA. Composites Part B: Engineering, 2020, 202, 108410.	12.0	33
5	Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties. Composite Interfaces, 2018, 25, 287-299.	2.3	32
6	Injection Molding of Highly Filled Polypropylene-based Biocomposites. Buckwheat Husk and Wood Flour Filler: A Comparison of Agricultural and Wood Industry Waste Utilization. Polymers, 2019, 11, 1881.	4.5	32
7	The effect of two-step surface treatment by hydrogen peroxide and silanization of flax/cotton fabrics on epoxy-based laminates thermomechanical properties and structure. Journal of Materials Research and Technology, 2020, 9, 13813-13824.	5.8	26
8	Melt fracture and rheology of linear low density polyethylene - calcium carbonate composites. Polymer Engineering and Science, 2017, 57, 998-1004.	3.1	25
9	Mechanical and Thermal Properties of PET/PBT Blends. Molecular Crystals and Liquid Crystals, 2004, 416, 209-215.	0.9	23
10	Polypropylene composites obtained from selfâ€reinforced hybrid fiber system. Journal of Applied Polymer Science, 2016, 133, .	2.6	23
11	Effect of wood flour addition and modification of its surface on the properties of rotationally molded polypropylene composites. Polimery, 2018, 63, 772-784.	0.7	21
12	Polypropylene (PP) Composites Reinforced with Stinging Nettle (<i>Utrica dioica</i> L.) Fiber. Journal of Natural Fibers, 2013, 10, 147-158.	3.1	20
13	Polylactic acid/Lignocellulosic residue composites compatibilized through a starch coating. Polymer Composites, 2020, 41, 3250-3259.	4.6	15
14	The Influence of the Hybridization Process on the Mechanical and Thermal Properties of Polyoxymethylene (POM) Composites with the Use of a Novel Sustainable Reinforcing System Based on Biocarbon and Basalt Fiber (BC/BF). Materials, 2020, 13, 3496.	2.9	14
15	Fabrication of the selfâ€reinforced composites using coâ€extrusion technique. Journal of Applied Polymer Science, 2014, 131, .	2.6	13
16	Mechanical properties of polypropylene copolymers composites filled with rapeseed straw. Polimery, 2014, 59, 165-169.	0.7	13
17	Two-dimensional spectral–spatial EPR imaging with the rapid scan and modulated magnetic field gradient. Journal of Magnetic Resonance, 2014, 243, 1-7.	2.1	12
	The influence of processing conditions on the mechanical properties and structure of polv(ethylene) Ti ETOq0	0 0 rgBT /O	verlock 10 Tf

18 1194-1209. rgBT /Overloc 4.2 12

MAREK SZOSTAK

#	Article	IF	CITATIONS
19	Mechanical and Thermal Properties of Rotational Molded PE/Flax and PE/Hemp Composites. Lecture Notes in Mechanical Engineering, 2019, , 495-506.	0.4	11
20	Thermoâ€mechanical and mechanical behavior of hybrid isotactic polypropylene glass fiber reinforced composites (<scp>GFRC</scp>) modified with calcium carbonate (<scp>CaCO₃</scp>). Polymer Engineering and Science, 2020, 60, 1588-1603.	3.1	11
21	Two-dimensional EPR imaging with the rapid scan and rotated magnetic field gradient. Journal of Magnetic Resonance, 2014, 248, 126-130.	2.1	10
22	The structure of isotactic polypropylene in composites filled with lignocellulosic material. Journal of Natural Fibers, 2019, 16, 471-483.	3.1	10
23	Preparation of hybrid poly(lactic acid)/flax composites by the insert overmolding process: Evaluation of mechanical performance and thermomechanical properties. Journal of Applied Polymer Science, 2021, 138, 49646.	2.6	10
24	MuCell and InduMold technologies in production of high quality automotive parts from polymer materials. Polimery, 2018, 63, 145-152.	0.7	10
25	Characterization of poly(ethylene 2,6-naphthalate)/polycarbonate blends by DSC, NMR off-resonance and DMTA methods. European Polymer Journal, 2015, 64, 62-69.	5.4	9
26	The accelerated aging impact on polyurea spray-coated composites filled with basalt fibers, basalt powder, and halloysite nanoclay. Composites Part B: Engineering, 2021, 225, 109286.	12.0	9
27	Milled basalt fibers as reinforcement for polyurea composite spray coatings with improved thermomechanical stability and mechanical performance. Polimery, 2020, 65, 184-195.	0.7	8
28	Development and Characterization of the Injection-Molded Polymer Composites Made from Bicomponent Fibers. Polymer-Plastics Technology and Engineering, 2015, 54, 33-46.	1.9	7
29	Spray-formed polyurea composites filled with basalt powder as inorganic waste filler. Plastics, Rubber and Composites, 2021, 50, 276-284.	2.0	7
30	Molecular dynamics of poly(ethylene 2,6-naphthalate)-polycarbonate composite by nuclear magnetic resonance. Applied Magnetic Resonance, 2005, 29, 221-229.	1.2	5
31	The use of photogrammetry in improving quality of workpieces after an injection molding process. Polimery, 2018, 63, 134-144.	0.7	4
32	The magnet system for rapid scan electron paramagnetic resonance imaging and spectroscopy. Concepts in Magnetic Resonance Part B, 2013, 43B, 22-31.	0.7	3
33	Recycling of lignocellulosics filled polypropylene composites. I. Analysis of thermal properties, morphology, and amount of free radicals. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
34	Influence of Fill Imbalance on Pressure Drop in Injection Molding. Lecture Notes in Mechanical Engineering, 2019, , 548-556.	0.4	2
35	Research on External and Internal Induction Heating Effectiveness of Injection Molds by Means of Thermovision Measurements. , 2014, , .		1
36	Preparation and Characterization of the Injection Molded Polymer Composites Based on Natural/Synthetic Fiber Reinforcement. Lecture Notes in Mechanical Engineering, 2019, , 473-484.	0.4	1

MAREK SZOSTAK

#	Article	IF	CITATIONS
37	Mechanical Properties and Structure of Reactive Rotationally Molded Polyurethane - Basalt Powder Composites. Lecture Notes in Mechanical Engineering, 2019, , 601-609.	0.4	1
38	Influence of process parameters and runner geometry on shear heating effect. , 2018, , 36-38.	0.1	1
39	Influence of scale deposition on maintenance of injection molds. Eksploatacja I Niezawodnosc, 2017, 20, 39-45.	2.0	1
40	Influence of coolant type and flow parameters on efficiency of injection mold cooling. Polimery, 2018, 63, 224-233.	0.7	0