## Celia Jiménez-Cervantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5182434/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mahogunin Ring Finger 1 regulates pigmentation by controlling the pH of melanosomes in melanocytes and melanoma cells. Cellular and Molecular Life Sciences, 2022, 79, 1.                                                                                            | 5.4 | 6         |
| 2  | Mahogunin Ring Finger 1 Is Required for Genomic Stability and Modulates the Malignant Phenotype of<br>Melanoma Cells. Cancers, 2020, 12, 2840.                                                                                                                       | 3.7 | 3         |
| 3  | Functional characterization of a Câ€ŧerminal splice variant of the human melanocortin 1 receptor.<br>Experimental Dermatology, 2020, 29, 610-615.                                                                                                                    | 2.9 | 6         |
| 4  | cAMP-independent non-pigmentary actions of variant melanocortin 1 receptor: AKT-mediated activation of protective responses to oxidative DNA damage. Oncogene, 2018, 37, 3631-3646.                                                                                  | 5.9 | 29        |
| 5  | Functional interplay between secreted ligands and receptors in melanoma. Seminars in Cell and Developmental Biology, 2018, 78, 73-84.                                                                                                                                | 5.0 | 16        |
| 6  | Human melanocortin 1 receptor-mediated ubiquitination of nonvisual arrestins. Role of Mahogunin<br>Ring Finger 1 E3 ligase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 76-94.                                                              | 4.1 | 8         |
| 7  | Sticky fingers at work: Palmitoylationâ€dependent MC1R activation. Pigment Cell and Melanoma<br>Research, 2018, 31, 238-240.                                                                                                                                         | 3.3 | 3         |
| 8  | MC1R signaling. Intracellular partners and pathophysiological implications. Biochimica Et Biophysica<br>Acta - Molecular Basis of Disease, 2017, 1863, 2448-2461.                                                                                                    | 3.8 | 85        |
| 9  | Identification and functional characterization of natural human melanocortin 1 receptor mutant alleles in Pakistani population. Pigment Cell and Melanoma Research, 2015, 28, 730-735.                                                                               | 3.3 | 4         |
| 10 | Functional Characterization of MC1R-TUBB3 Intergenic Splice Variants of the Human Melanocortin 1<br>Receptor. PLoS ONE, 2015, 10, e0144757.                                                                                                                          | 2.5 | 14        |
| 11 | <scp>MC</scp> 1R, the c <scp>AMP</scp> pathway, and the response to solar <scp>UV</scp> : extending the horizon beyond pigmentation. Pigment Cell and Melanoma Research, 2014, 27, 699-720.                                                                          | 3.3 | 146       |
| 12 | MC1R Is a Potent Regulator of PTEN after UV Exposure in Melanocytes. Molecular Cell, 2013, 51, 409-422.                                                                                                                                                              | 9.7 | 122       |
| 13 | Differential and competitive regulation of human melanocortin 1 receptor signaling by β-arrestin isoforms. Journal of Cell Science, 2013, 126, 3724-37.                                                                                                              | 2.0 | 26        |
| 14 | Functional status and relationships of melanocortin 1 receptor signaling to the cAMP and<br>extracellular signal-regulated protein kinases 1 and 2 pathways in human melanoma cells.<br>International Journal of Biochemistry and Cell Biology, 2012, 44, 2244-2252. | 2.8 | 24        |
| 15 | Biosynthesis of hamster zona pellucida is restricted to the oocyte. Theriogenology, 2011, 75, 463-472.                                                                                                                                                               | 2.1 | 6         |
| 16 | Nâ€glycosylation of the human melanocortin 1 receptor: occupancy of glycosylation sequons and functional role. Pigment Cell and Melanoma Research, 2011, 24, 479-489.                                                                                                | 3.3 | 15        |
| 17 | Signaling from the Human Melanocortin 1 Receptor to ERK1 and ERK2 Mitogen-Activated Protein Kinases Involves Transactivation of cKIT. Molecular Endocrinology, 2011, 25, 138-156.                                                                                    | 3.7 | 91        |
| 18 | Mahogunin Ring Finger-1 (MGRN1) E3 Ubiquitin Ligase Inhibits Signaling from Melanocortin Receptor by Competition with Gi±s. Journal of Biological Chemistry, 2009, 284, 31714-31725.                                                                                 | 3.4 | 45        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Melanocortin 1 receptor mutations impact differentially on signalling to the cAMP and the ERK<br>mitogenâ€activated protein kinase pathways. FEBS Letters, 2009, 583, 3269-3274.                                                          | 2.8 | 47        |
| 20 | Identification and functional analysis of novel variants of the human melanocortin 1 receptor found in melanoma patients. Human Mutation, 2009, 30, 811-822.                                                                              | 2.5 | 54        |
| 21 | Aberrant trafficking of human melanocortin 1 receptor variants associated with red hair and skin<br>cancer: Steadyâ€state retention of mutant forms in the proximal golgi. Journal of Cellular Physiology,<br>2009, 220, 640-654.         | 4.1 | 42        |
| 22 | Molecular cloning and biochemical characterization of the skin tyrosinase from Rana esculenta L<br>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 152, 234-242.                                    | 1.6 | 4         |
| 23 | Hamster Zona Pellucida Is Formed by Four Glycoproteins: ZP1, ZP2, ZP3, and ZP4. Journal of Proteome<br>Research, 2009, 8, 926-941.                                                                                                        | 3.7 | 53        |
| 24 | Mechanism of dimerization of the human melanocortin 1 receptor. Biochemical and Biophysical Research Communications, 2008, 368, 211-216.                                                                                                  | 2.1 | 32        |
| 25 | Regulation of Human Melanocortin 1 Receptor Signaling and Trafficking by Thr-308 and Ser-316 and Its<br>Alteration in Variant Alleles Associated with Red Hair and Skin Cancer. Journal of Biological<br>Chemistry, 2007, 282, 3241-3251. | 3.4 | 50        |
| 26 | Dimerization of the Human Melanocortin 1 Receptor: Functional Consequences and Dominant-Negative Effects. Journal of Investigative Dermatology, 2006, 126, 172-181.                                                                       | 0.7 | 80        |
| 27 | Mouse Ornithine Decarboxylase-like Gene Encodes an Antizyme Inhibitor Devoid of Ornithine and<br>Arginine Decarboxylating Activity. Journal of Biological Chemistry, 2006, 281, 30896-30906.                                              | 3.4 | 55        |
| 28 | Melanocortin-1 receptor structure and functional regulation. Pigment Cell & Melanoma Research, 2005, 18, 051103015727002.                                                                                                                 | 3.6 | 265       |
| 29 | Role of G Protein-Coupled Receptor Kinases in the Homologous Desensitization of the Human and<br>Mouse Melanocortin 1 Receptors. Molecular Endocrinology, 2005, 19, 1035-1048.                                                            | 3.7 | 36        |
| 30 | The melanocortin-1 receptor carboxyl terminal pentapeptide is essential for MC1R function and expression on the cell surface. Peptides, 2005, 26, 1848-1857.                                                                              | 2.4 | 33        |
| 31 | Agonist-Independent, High Constitutive Activity of the Human Melanocortin 1 Receptor. Pigment Cell & Melanoma Research, 2004, 17, 386-395.                                                                                                | 3.6 | 64        |
| 32 | Rate Limiting Factors in Melanocortin 1 Receptor Signalling Throughthe cAMP Pathway. Pigment Cell & Melanoma Research, 2003, 16, 540-547.                                                                                                 | 3.6 | 43        |
| 33 | Anti-inflammatory and anti-invasive effects of α-melanocyte-stimulating hormone in human melanoma cells. British Journal of Cancer, 2003, 89, 2004-2015.                                                                                  | 6.4 | 65        |
| 34 | Loss-of-function variants of the human melanocortin-1 receptor gene in melanoma cells define structural determinants of receptor function. FEBS Journal, 2002, 269, 6133-6141.                                                            | 0.2 | 59        |
| 35 | Thr40 and Met122 are new partial loss-of-function natural mutations of the human melanocortin 1 receptor. FEBS Letters, 2001, 508, 44-48.                                                                                                 | 2.8 | 51        |
| 36 | The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. Biochemical<br>Journal, 2001, 354, 131-139.                                                                                                       | 3.7 | 111       |

Celia Jiménez-Cervantes

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. Biochemical<br>Journal, 2001, 354, 131.                                                                                                                              | 3.7 | 84        |
| 38 | The Pro162 Variant is a Loss-of-Function Mutation of the Human Melanocortin 1 Receptor Gene.<br>Journal of Investigative Dermatology, 2001, 117, 156-158.                                                                                                    | 0.7 | 35        |
| 39 | Regulation of the Murine Silver Locus Product (gp87) by the Hypopigmenting Cytokines TGF-β1 and TNF-α.<br>Pigment Cell & Melanoma Research, 2000, 13, 120-126.                                                                                               | 3.6 | 10        |
| 40 | New Insights on the Structure of the Mouse Silver Locus and on the Function of the Silver Protein.<br>Pigment Cell & Melanoma Research, 2000, 13, 118-124.                                                                                                   | 3.6 | 35        |
| 41 | The mouse silver locus encodes a single transcript truncated by the silver mutation. Mammalian Genome, 1999, 10, 1168-1171.                                                                                                                                  | 2.2 | 53        |
| 42 | Mechanisms of melanogenesis inhibition by tumor necrosis factorâ€Î± in B16/F10 mouse melanoma cells.<br>FEBS Journal, 1998, 255, 139-146.                                                                                                                    | 0.2 | 101       |
| 43 | Activation by thyroid stimulating hormone of nerve growth factor-induced gene-B expression in thyrocytes in culture: relation with proliferation and specific gene expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1403, 232-244. | 4.1 | 6         |
| 44 | Molecular Interactions within the Melanogenic Complex: Formation of Heterodimers of Tyrosinase<br>and TRP1 from B16 Mouse Melanoma. Biochemical and Biophysical Research Communications, 1998, 253,<br>761-767.                                              | 2.1 | 33        |
| 45 | The Melanogenic System of Xenopus laevis Archives of Histology and Cytology, 1998, 61, 305-316.                                                                                                                                                              | 0.2 | 52        |
| 46 | Transforming Growth Factor-β1 Inhibits Basal Melanogenesis in B16/F10 Mouse Melanoma Cells by<br>Increasing the Rate of Degradation of Tyrosinase and Tyrosinase-related Protein-1. Journal of<br>Biological Chemistry, 1997, 272, 3967-3972.                | 3.4 | 70        |
| 47 | Melanin formation in the inner ear is catalyzed by a new tyrosine hydroxylase kinetically and<br>structurally different from tyrosinase. Biochimica Et Biophysica Acta - General Subjects, 1997, 1336,<br>59-72.                                             | 2.4 | 16        |
| 48 | Comparison of TRPs From Murine and Human Malignant Melanocytes. Pigment Cell & Melanoma<br>Research, 1997, 10, 229-235.                                                                                                                                      | 3.6 | 6         |
| 49 | Molecular mechanism for catalysis by a new zinc-enzyme, dopachrome tautomerase. Biochemical<br>Journal, 1996, 313, 447-453.                                                                                                                                  | 3.7 | 52        |
| 50 | Induction of nerve growth factor-induced gene-B (NGFI-B) as an early event in the cyclic adenosine<br>monophosphate response of dog thyrocytes in primary culture. Endocrinology, 1996, 137, 4691-4698.                                                      | 2.8 | 4         |
| 51 | Biochemical characterization of the melanogenic system in the eye of adult rodents. BBA - Proteins and Proteomics, 1995, 1252, 217-224.                                                                                                                      | 2.1 | 6         |
| 52 | Effect of detergents and endogenous lipids on the activity and properties of tyrosinase and its related proteins. Biochimica Et Biophysica Acta - General Subjects, 1995, 1243, 421-430.                                                                     | 2.4 | 23        |
| 53 | Tyrosinase Isoenzymes: Two Melanosomal Tyrosinases With Different Kinetic Properties and Susceptibility to Inhibition by Calcium. Pigment Cell & Melanoma Research, 1994, 7, 291-297.                                                                        | 3.6 | 3         |
| 54 | The DHICA Oxidase Activity of the Melanosomal Tyrosinases LEMT and HEMT. Pigment Cell & Melanoma Research, 1994, 7, 298-304.                                                                                                                                 | 3.6 | 3         |

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dopachrome Tautomerase Is a Zinc-Containing Enzyme. Biochemical and Biophysical Research<br>Communications, 1994, 204, 1243-1250.                                         | 2.1 | 44        |
| 56 | Preparation of Purified Tyrosinase Devoid of Dopachrome Tautomerase From Mammalian Malignant<br>Melanocytes. Pigment Cell & Melanoma Research, 1993, 6, 158-164.          | 3.6 | 5         |
| 57 | Improved Tyrosinase Activity Stains in Polyacrylamide Electrophoresis Gels. Pigment Cell & Melanoma<br>Research, 1993, 6, 394-399.                                        | 3.6 | 46        |
| 58 | Tyrosinase isoenzymes in mammalian melanocytes. 2. Differential activation by alpha-melanocyte-stimulating hormone. FEBS Journal, 1993, 217, 541-548.                     | 0.2 | 14        |
| 59 | Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. FEBS Journal, 1993, 217, 549-556. | 0.2 | 87        |