
Prajnaparamita Dhar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5182212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Combined Impact of Temperature and Application of Interfacial Dilatational Stresses on Surface-mediated Protein Particle Formation in Monoclonal Antibody Formulations. Journal of Pharmaceutical Sciences, 2022, 111, 680-689.	1.6	6
2	Impact of Polysorbate 80 Grade on the Interfacial Properties and Interfacial Stress Induced Subvisible Particle Formation in Monoclonal Antibodies. Journal of Pharmaceutical Sciences, 2021, 110, 746-759.	1.6	17
3	Lung Surfactant Decreases Biochemical Alterations and Oxidative Stress Induced by a Sub-Toxic Concentration of Carbon Nanoparticles in Alveolar Epithelial and Microglial Cells. International Journal of Molecular Sciences, 2021, 22, 2694.	1.8	3
4	Hyaluronic Acid Hydrogel Microspheres for Slow Release Stem Cell Delivery. ACS Biomaterials Science and Engineering, 2021, 7, 3754-3763.	2.6	22
5	Viscoelastic Properties of ECM-Rich Embryonic Microenvironments. Frontiers in Cell and Developmental Biology, 2020, 8, 674.	1.8	3
6	Impact of Engineered Carbon Nanodiamonds on the Collapse Mechanism of Model Lung Surfactant Monolayers at the Air-Water Interface. Molecules, 2020, 25, 714.	1.7	4
7	Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Cell Death and Disease, 2018, 9, 245.	2.7	61
8	Self-Assembled Coacervates of Chitosan and an Insect Cuticle Protein Containing a Rebers–Riddiford Motif. Biomacromolecules, 2018, 19, 2391-2400.	2.6	9
9	pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology. Langmuir, 2018, 34, 1159-1170.	1.6	7
10	Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb. Journal of Pharmaceutical Sciences, 2016, 105, 1643-1656.	1.6	60
11	Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air–water interface. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 904-912.	1.4	10
12	Monitoring phases and phase transitions in phosphatidylethanolamine monolayers using active interfacial microrheology. Soft Matter, 2015, 11, 3313-3321.	1.2	19
13	Phospholipid Composition Modulates Carbon Nanodiamond-Induced Alterations in Phospholipid Domain Formation. Langmuir, 2015, 31, 5093-5104.	1.6	16
14	Interface-Induced Disassembly of a Self-Assembled Two-Component Nanoparticle System. Langmuir, 2013, 29, 3654-3661.	1.6	16
15	Active Interfacial Shear Microrheology of Aging Protein Films. Physical Review Letters, 2010, 104, 016001.	2.9	89
16	Autonomously Moving Local Nanoprobes in Heterogeneous Magnetic Fields. Journal of Physical Chemistry C, 2007, 111, 3607-3613.	1.5	39