Alexey A Nazarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5182018/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Versatile analytical methodology for evaluation of drug-like properties of potentially multi-targeting anticancer metallodrugs. Analytical Sciences, 2022, 38, 627-632.	1.6	2
2	Novel cis-Pt(II) Complexes with Alkylpyrazole Ligands: Synthesis, Characterization, and Unusual Mode of Anticancer Action. Bioinorganic Chemistry and Applications, 2022, 2022, 1-13.	4.1	10
3	Rull and Rulll complexes with imidazole ligands containing (benzyloxy)pyridinone moiety. Mendeleev Communications, 2022, 32, 186-188.	1.6	2
4	Hydrolytically stable organometallic ruthenium complexes with glucose-based phosphite ligands. Russian Chemical Bulletin, 2022, 71, 962-966.	1.5	5
5	Is antitumor Pt(IV) complex containing two axial lonidamine ligands a true dual- or multi-action prodrug?. Metallomics, 2022, 14, .	2.4	6
6	Poly(Ethylene Glycol)-b-Poly(D,L-Lactide) Nanoparticles as Potential Carriers for Anticancer Drug Oxaliplatin. Molecules, 2021, 26, 602.	3.8	22
7	Unprecedented Coordination-Induced Bright Red Emission from Group 12 Metal-Bound Triarylazoimidazoles. Molecules, 2021, 26, 1739.	3.8	10
8	Ruthenium(III) Complexes of NAMI-A Type with Ligands Based on Lonidamine and Bexarotene as Antiproliferative Agents. Russian Journal of Inorganic Chemistry, 2021, 66, 502-509.	1.3	7
9	Azoimidazole gold(III) complexes: Synthesis, structural characterization and self-assembly in the solid state. Inorganica Chimica Acta, 2021, 522, 120373.	2.4	24
10	Structure and cytotoxicity of biodegradable poly(d,l-lactide-co-glycolide) nanoparticles loaded with oxaliplatin. Mendeleev Communications, 2021, 31, 512-514.	1.6	11
11	Metallodrug Profiling against SARS oVâ€2 Target Proteins Identifies Highly Potent Inhibitors of the S/ACE2 interaction and the Papainâ€like Protease PL ^{pro} . Chemistry - A European Journal, 2021, 27, 17928-17940.	3.3	41
12	Ru(III) Complexes with Lonidamine-Modified Ligands. International Journal of Molecular Sciences, 2021, 22, 13468.	4.1	11
13	Ruthenium(II)–arene and triruthenium-carbonyl cluster complexes with new water-soluble phopsphites based on glucose: Synthesis, characterization and antiproliferative activity. Journal of Organometallic Chemistry, 2020, 919, 121312.	1.8	10
14	Unexpected antifungal activity of half-sandwich complexes with metalâ^'iodine bonds. Journal of Organometallic Chemistry, 2020, 916, 121272.	1.8	7
15	Antiproliferative activity of Pt(IV) complexes with lonidamine and bexarotene ligands attached via succinate-ethylenediamine linker. Inorganica Chimica Acta, 2019, 495, 119010.	2.4	9
16	The antioxidant 2,6-di- <i>tert</i> -butylphenol moiety attenuates the pro-oxidant properties of the auranofin analogue. Metallomics, 2018, 10, 406-413.	2.4	9
17	Understanding the interactions of diruthenium anticancer agents with amino acids. Journal of Biological Inorganic Chemistry, 2018, 23, 1159-1164.	2.6	13
18	Amidoxime platinum(<scp>ii</scp>) complexes: pH-dependent highly selective generation and cytotoxic activity. New Journal of Chemistry, 2017, 41, 6840-6848.	2.8	11

#	Article	IF	CITATIONS
19	New highly cytotoxic organic and organometallic bexarotene derivatives. Journal of Organometallic Chemistry, 2017, 839, 91-97.	1.8	11
20	Enhancing the Cytotoxic Activity of Anticancer Pt ^{IV} Complexes by Introduction of Lonidamine as an Axial Ligand. European Journal of Inorganic Chemistry, 2017, 2017, 1785-1791.	2.0	29
21	Influence of the Number of Axial Bexarotene Ligands on the Cytotoxicity of Pt(IV) Analogs of Oxaliplatin. Bioinorganic Chemistry and Applications, 2017, 2017, 1-6.	4.1	5
22	Antiproliferative activity of ruthenium and osmium clusters with phosphine ligands. Russian Chemical Bulletin, 2016, 65, 546-549.	1.5	10
23	Protein ruthenation and DNA alkylation: chlorambucil-functionalized RAPTA complexes and their anticancer activity. Dalton Transactions, 2015, 44, 3614-3623.	3.3	68
24	Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity. Nature Communications, 2014, 5, 3462.	12.8	257
25	Opening the lid on piano-stool complexes: An account ofÂruthenium(II)–arene complexes with medicinal applications. Journal of Organometallic Chemistry, 2014, 751, 251-260.	1.8	236
26	Organometallic anticancer agents that interfere with cellular energy processes: a subtle approach to inducing cancer cell death. Dalton Transactions, 2013, 42, 2347-2350.	3.3	45
27	Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters. Scientific Reports, 2013, 3, 1485.	3.3	47
28	Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes. Frontiers in Chemistry, 2013, 1, 27.	3.6	23
29	Maleimide-functionalised organoruthenium anticancer agents and their binding to thiol-containing biomolecules. Chemical Communications, 2012, 48, 1475-1477.	4.1	91
30	Anthracene-Tethered Ruthenium(II) Arene Complexes as Tools To Visualize the Cellular Localization of Putative Organometallic Anticancer Compounds. Inorganic Chemistry, 2012, 51, 3633-3639.	4.0	54
31	Synthesis of [Rull(η6-p-cymene)(PPh3)(L)Cl]PF6 complexes with carbohydrate-derived phosphites, imidazole or indazole co-ligands. Inorganica Chimica Acta, 2012, 380, 211-215.	2.4	10
32	Organometallic Ruthenium(II) Arene Compounds with Antiangiogenic Activity. Journal of Medicinal Chemistry, 2011, 54, 3895-3902.	6.4	229
33	Metal-Based Inhibition of Poly(ADP-ribose) Polymerase â~' The Guardian Angel of DNA. Journal of Medicinal Chemistry, 2011, 54, 2196-2206.	6.4	137
34	Metal Phosphorus Complexes as Antitumor Agents. Catalysis By Metal Complexes, 2011, , 445-461.	0.6	8
35	DNA Reactivity Profile of <i>trans</i> â€Platinum Planar Amine Derivatives. ChemMedChem, 2011, 6, 1283-1290	3.2	15
36	Thermoresponsive Chlorambucil Derivatives for Tumour Targeting. Angewandte Chemie - International Edition, 2011, 50, 7124-7127.	13.8	27

ARTICLE IF CITATIONS From hydrolytically labile to hydrolytically stable Rullâ€"arene anticancer complexes with carbohydrate-derived co-ligands. Journal of Inorganic Biochemistry, 2011, 105, 224-231. Polynuclear Ruthenium, Osmium and Gold Complexes. The Quest for Innovative Anticancer 38 2.180 Chemotherapeutics. Current Topics in Medicinal Chemistry, 2011, 11, 2688-2702. Editorial [Hot Topic: Metal Containing Complexes with Anticancer Properties (Guest Editors: A.) Tj ETQq1 1 0.784314 rgBT /Qverlock Specific DNA structural attributes modulate platinum anticancer drug site selection and cross-link 40 14.5 31 generation. Nucleic Acids Research, 2011, 39, 8200-8212. Osmium(ii)–versus ruthenium(ii)–arene carbohydrate-based anticancer compounds: similarities and differences. Dalton Transactions, 2010, 39, 7345. 3.3 88 Mannich products of kojic acid and N-heterocycles and their Ru(II)–arene complexes: Synthesis, 42 1.8 26 characterization and stability. Journal of Organometallic Chemistry, 2010, 695, 875-881. Organometallic Antitumour Agents with Alternative Modes of Action. Topics in Organometallic Chemistry, 2010, , 57-80. {(1<i>R</i>,2<i>R</i>,4<i>R</i>)-4-Methyl-1,2-cyclohexanediamine}oxalatoplatinum(II): A Novel Enantiomerically Pure Oxaliplatin Derivative Showing Improved Anticancer Activity in Vivo. Journal of 44 6.4 51 Medicinal Chemistry, 2010, 53, 7356-7364. Rational Design of Highly Cytotoxic Î-6-Arene β-Diketiminatoâ^'Ruthenium Complexes. Organometallics, 2010, 29, 417-427. 2.3 DNA interactions of dinuclear Rull arene antitumor complexes in cell-free media. Biochemical 46 4.4 76 Pharmacology, 2009, 77, 364-374. Maltolâ€Derived Ruthenium–Cymene Complexes with Tumor Inhibiting Properties: The Impact of Ligand–Metal Bond Stability on Anticancer Activity In Vitro. Chemistry - A European Journal, 2009, 15, 3.3 111 12283-12291. Tuning the anticancer activity of maltol-derived ruthenium complexes by derivatization of the 48 1.8 64 3-hydroxy-4-pyrone moiety. Journal of Organometallic Chemistry, 2009, 694, 922-929. A one step/one pot synthesis of N,N-bis(phosphonomethyl)amino acids and their effects on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Bioorganic and Medicinal Chemistry, 2009, 17, 3388-3393. Influence of Structural Variation on the Anticancer Activity of RAPTA-Type Complexes: ptn versus pta. 50 2.3 79 Organometallics, 2009, 28, 1165-1172. Transferring the Concept of Multinuclearity to Ruthenium Complexes for Improvement of Anticancer 6.4 168 Activity. Journal of Medicinal Chemistry, 2009, 52, 916-925. From Pyrone to Thiopyrone Ligandsa² Rendering Maltol-Derived Ruthenium(II)a² Arene Complexes That 52 2.3 85 Are Anticancer Active in Vitro. Organometallics, 2009, 28, 4249-4251. Influence of the Arene Ligand, the Number and Type of Metal Centers, and the Leaving Group on the<i>in Vitro</i>Antitumor Activity of Polynuclear Organometallic Compounds. Organometallics, 2.3 2009, 28, 6260-6265. In Vitro Anticancer Activity and Biologically Relevant Metabolization of Organometallic Ruthenium 54 3.3 111 Complexes with Carbohydrateâ€Based Ligands. Chemistry - A European Journal, 2008, 14, 9046-9057.

#	Article	IF	CITATIONS
55	Phosphiteâ€Derivatized Rutheniumâ€Carbohydrate Complexes in the Catalytic Hydration of Nitriles. Short Communication. Chemistry and Biodiversity, 2008, 5, 1640-1644.	2.1	22
56	The Hydration of Chloroacetonitriles Catalyzed by Mono―and Dinuclear Ru ^{II} ―and Os ^{II} â€Arene Complexes. Chemistry and Biodiversity, 2008, 5, 2060-2066.	2.1	21
57	Modifying the structure of dinuclear ruthenium complexes with antitumor activity. Applied Organometallic Chemistry, 2008, 22, 326-332.	3.5	45
58	Novel and Mild Route to Phthalocyanines and 3â€lminoisoindolinâ€1â€ones <i>via N</i> , <i>N</i> â€Diethylhydroxylamineâ€Promoted Conversion of Phthalonitriles and a Dramatic Solventâ€Dependence of the Reaction. Advanced Synthesis and Catalysis, 2008, 350, 135-142.	4.3	34
59	Methyl-substituted trans-1,2-cyclohexanediamines as new ligands for oxaliplatin-type complexes. Tetrahedron, 2008, 64, 137-146.	1.9	10
60	Influence of the Spacer Length on the <i>in Vitro</i> Anticancer Activity of Dinuclear Rutheniumâ^'Arene Compounds. Organometallics, 2008, 27, 2405-2407.	2.3	180
61	Carbohydrate-Metal Complexes and their Potential as Anticancer Agents. Current Medicinal Chemistry, 2008, 15, 2574-2591.	2.4	160
62	First Example of the Solid-State Thermal Cyclometalation of Ligated Benzophenone Imine Giving Novel Luminescent Platinum(II) Species. Inorganic Chemistry, 2007, 46, 4469-4482.	4.0	44
63	Ptll-Mediated Nitrileâ^'Tetramethylguanidine Coupling as a Key Step for a Novel Synthesis of 1,6-Dihydro-1,3,5-triazinesâ—‹. Inorganic Chemistry, 2007, 46, 1684-1693.	4.0	29
64	Theoretical Study of Chemo-, Regio-, and Stereoselectivity in 1,3-Dipolar Cycloadditions of Nitrones and Nitrile Oxides to Free and Pt-Bound Bifunctional Dipolarophiles. Journal of Organic Chemistry, 2007, 72, 4475-4485.	3.2	47
65	The Complexes [OsCl2(azole)2(dmso)2] and [OsCl2(azole)(dmso)3]: Synthesis, Structure, Spectroscopic Properties and Catalytic Hydration of Chloronitriles. European Journal of Inorganic Chemistry, 2007, 2007, 400-411.	2.0	43
66	A glucose derivative as natural alternative to the cyclohexane-1,2-diamine ligand in the anticancer drug oxaliplatin?. ChemMedChem, 2007, 2, 505-514.	3.2	49
67	Electrospray ionization mass spectrometric study on the coordination behavior of dacarbazine towards transition metal ions. Polyhedron, 2006, 25, 1971-1978.	2.2	6
68	Glucose ferrocenyl-oxazolines: Coordination behavior toward [Pd(η3-allyl)Cl]2 studied by ESI-MS. Journal of Organometallic Chemistry, 2005, 690, 3301-3308.	1.8	16
69	Bis- and tris-bicyclophosphites of d-glucofuranoside. Unexpected catalysis of P(III/V)-oxidation by triethylamine. Tetrahedron, 2005, 61, 10943-10950.	1.9	6
70	Synthesis and structure-activity relationships of mono- and dialkyl-substituted oxaliplatin derivatives. European Journal of Medicinal Chemistry, 2005, 40, 1149-1155.	5.5	43
71	1,1'-Bis(oxazolin-2-yl)ferrocenes: An Investigation of Their Complexation Behavior toward [Pd(?3-allyl)Cl]2. European Journal of Inorganic Chemistry, 2005, 2005, 1589-1600.	2.0	14
72	Interplay between Nitrones and (Nitrile)PdII Complexes: Cycloaddition vs. Complexation Followed by Cyclopalladation and Deoxygenation Reactions. European Journal of Inorganic Chemistry, 2005, 2005, 3042-3048.	2.0	32

#	Article	IF	CITATIONS
73	On the Coordination Properties of New Bicyclophosphite-Carbohydrates. Monatshefte Für Chemie, 2005, 136, 137-146.	1.8	2
74	Protic Conversion of Nitrile into Azavinylidene Complexes of Rhenium, a Mechanistic Theoretical Study. Journal of Physical Chemistry A, 2005, 109, 8187-8198.	2.5	14
75	Rational development of oxaliplatin analogues ? synthesis and preliminary structure-activity relationships. International Journal of Clinical Pharmacology and Therapeutics, 2005, 43, 575-576.	0.6	Ο
76	Synthesis, crystal structure and cytotoxicity of new oxaliplatin analogues indicating that improvement of anticancer activity is still possible. European Journal of Medicinal Chemistry, 2004, 39, 707-714.	5.5	51
77	Crystallographic report: Crystal structure of 1-bromo-1?-[(2S)-N-(1-hydroxy-3-methylbutane-2-yl)]-ferroceneamide. Applied Organometallic Chemistry, 2003, 17, 723-724.	3.5	Ο
78	Theoretical study of the relative stability of isomeric forms of platinum carboxamide complexes. Inorganica Chimica Acta, 2003, 350, 245-251.	2.4	3
79	Amidines Derived from Pt(IV)-Mediated Nitrileâ^'Amino Alcohol Coupling and Their Zn(II)-Catalyzed Conversion into Oxazolines. Inorganic Chemistry, 2003, 42, 2805-2813.	4.0	26
80	Synthesis, crystal structures, and electrospray ionisation mass spectrometry investigations of ether- and thioether-substituted ferrocenes. Dalton Transactions, 2003, , 3098.	3.3	8
81	Novel glucose-ferrocenyl derivatives: synthesis and properties. New Journal of Chemistry, 2002, 26, 671-673.	2.8	28
82	Synthesis of ferrocenylglucose phosphonite and bisphosphinite: Pd(II) and Pt(II) complexes, Pd-catalyzed allylic alkylation. Tetrahedron, 2002, 58, 8489-8492.	1.9	23
83	1,1,3,3-Tetramethyl-1,3-disila-2-oxa[3]ferrocenophane: improved synthesis and new crystal structure. Inorganica Chimica Acta, 2002, 328, 237-240.	2.4	7
84	New C ₂ -Chiral 1,1′-Bis(Oxazoline-2-YL)-Ferrocenes – Synthesis and Crystal Structure. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 169, 141-144.	1.6	1
85	Synthesis and New Crystal Structure of 1,1,3,3-Tetramethyl-1,3-Disila-2-Oxa[3] Ferrocenophane. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 169, 289-292.	1.6	0