Christopher Grefen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5181678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways. Plant Physiology, 2021, 187, 1916-1928.	4.8	9
2	Endoplasmic reticulum membrane receptors of the GET pathway are conserved throughout eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	13
3	Distinct RopGEFs Successively Drive Polarization and Outgrowth of Root Hairs. Current Biology, 2019, 29, 1854-1865.e5.	3.9	78
4	Constitutive signaling activity of a receptor-associated protein links fertilization with embryonic patterning in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5795-5804.	7.1	39
5	The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER. Journal of Cell Science, 2018, 131, .	2.0	34
6	2in1 Vectors Improve In Planta BiFC and FRET Analyses. Methods in Molecular Biology, 2018, 1691, 139-158.	0.9	24
7	ER Membrane Protein Interactions Using the Split-Ubiquitin System (SUS). Methods in Molecular Biology, 2018, 1691, 191-203.	0.9	5
8	Detecting Interactions of Membrane Proteins: The Split-Ubiquitin System. Methods in Molecular Biology, 2018, 1794, 49-60.	0.9	4
9	Loss of GET pathway orthologs in <i>Arabidopsis thaliana</i> causes root hair growth defects and affects SNARE abundance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1544-E1553.	7.1	56
10	ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. ELife, 2017, 6, .	6.0	125
11	Techniques for the analysis of protein-protein interactions in vivo. Plant Physiology, 2016, 171, pp.00470.2016.	4.8	177
12	An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nature Plants, 2015, 1, 15140.	9.3	373
13	A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion. Nature Plants, 2015, 1, 15108.	9.3	53
14	Binding of SEC11 Indicates Its Role in SNARE Recycling after Vesicle Fusion and Identifies Two Pathways for Vesicular Traffic to the Plasma Membrane. Plant Cell, 2015, 27, 675-694.	6.6	55
15	The Arabidopsis R-SNARE VAMP721 Interacts with KAT1 and KC1 K+ Channels to Moderate K+ Current at the Plasma Membrane. Plant Cell, 2015, 27, 1697-1717.	6.6	84
16	Binary 2in1 Vectors Improve in Planta (Co)localization and Dynamic Protein Interaction Studies. Plant Physiology, 2015, 168, 776-787.	4.8	84
17	Voltage-Sensor Transitions of the Inward-Rectifying K+ Channel KAT1 Indicate a Latching Mechanism Biased by Hydration within the Voltage Sensor Â. Plant Physiology, 2014, 166, 960-975.	4.8	21
18	The Golgi <i>S</i> -acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and <i>S</i> -acylation activity. Molecular Biology of the Cell, 2014, 25, 3870-3883	2.1	62

CHRISTOPHER GREFEN

#	Article	IF	CITATIONS
19	Applications of Fluorescent Marker Proteins in Plant Cell Biology. Methods in Molecular Biology, 2014, 1062, 487-507.	0.9	31
20	The Split-Ubiquitin System for the Analysis of Three-Component Interactions. Methods in Molecular Biology, 2014, 1062, 659-678.	0.9	17
21	<i>Arabidopsis</i> SNAREs SYP61 and SYP121 Coordinate the Trafficking of Plasma Membrane Aquaporin PIP2;7 to Modulate the Cell Membrane Water Permeability. Plant Cell, 2014, 26, 3132-3147.	6.6	192
22	Protein Delivery to Vacuole Requires SAND Protein-Dependent Rab GTPase Conversion for MVB-Vacuole Fusion. Current Biology, 2014, 24, 1383-1389.	3.9	144
23	SDM-Assist software to design site-directed mutagenesis primers introducing "silent―restriction sites. BMC Bioinformatics, 2013, 14, 105.	2.6	34
24	<i>Arabidopsis</i> Sec1/Munc18 Protein SEC11 Is a Competitive and Dynamic Modulator of SNARE Binding and SYP121-Dependent Vesicle Traffic Â. Plant Cell, 2013, 25, 1368-1382.	6.6	66
25	Do Calcineurin B-Like Proteins Interact Independently of the Serine Threonine Kinase CIPK23 with the K+ Channel AKT1? Lessons Learned from a Ménage à Trois. Plant Physiology, 2012, 159, 915-919.	4.8	46
26	Palmitoylation-induced Aggregation of Cysteine-string Protein Mutants That Cause Neuronal Ceroid Lipofuscinosis. Journal of Biological Chemistry, 2012, 287, 37330-37339.	3.4	57
27	Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYP121. Plant Cell, 2012, 24, 3463-3481.	6.6	109
28	A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). BioTechniques, 2012, 53, 311-314.	1.8	178
29	The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K ⁺ channel activity with vegetative growth. Plant Journal, 2012, 69, 241-251.	5.7	115
30	A bicistronic, <i>Ubiquitinâ€10</i> promoterâ€based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact <i>Arabidopsis</i> root epidermis. Plant, Cell and Environment, 2011, 34, 554-564.	5.7	12
31	Ion transport, membrane traffic and cellular volume control. Current Opinion in Plant Biology, 2011, 14, 332-339.	7.1	29
32	A molecular framework for coupling cellular volume and osmotic solute transport control. Journal of Experimental Botany, 2011, 62, 2363-2370.	4.8	35
33	Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. Journal of Experimental Botany, 2011, 62, 5571-5580.	4.8	155
34	A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant Journal, 2010, 64, 355-365.	5.7	499
35	A Novel Motif Essential for SNARE Interaction with the K+ Channel KC1 and Channel Gating in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 3076-3092.	6.6	119
36	A Tripartite SNARE-K+ Channel Complex Mediates in Channel-Dependent K+ Nutrition in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 2859-2877.	6.6	156

CHRISTOPHER GREFEN

#	Article	IF	CITATIONS
37	The Determination of Protein-protein Interactions by the Mating-based Split-ubiquitin system (mbSUS). Methods in Molecular Biology, 2009, 479, 217-233.	0.9	94
38	The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds. BMC Plant Biology, 2008, 8, 77.	3.6	88
39	SNAREs—molecular governors in signalling and development. Current Opinion in Plant Biology, 2008, 11, 600-609.	7.1	49
40	Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members. Molecular Plant, 2008, 1, 308-320.	8.3	207
41	The Histidine Kinase AHK5 Integrates Endogenous and Environmental Signals in Arabidopsis Guard Cells. PLoS ONE, 2008, 3, e2491.	2.5	138
42	Splitâ€Ubiquitin System for Identifying Proteinâ€Protein Interactions in Membrane and Fullâ€Length Proteins. Current Protocols in Neuroscience, 2007, 41, Unit 5.27.	2.6	64
43	Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. Journal of Experimental Botany, 2007, 58, 2595-2607.	4.8	64
44	Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal, 2004, 40, 428-438.	5.7	1,514
45	Plant two-component systems: principles, functions, complexity and cross talk. Planta, 2004, 219, 733-42.	3.2	133