
Thau00c3u00ads Mello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5181563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and photophysical properties of metal complexes of curcumin dyes: Solvatochromism, acidochromism, and photoactivity. Dyes and Pigments, 2022, 198, 110011.	2.0	15
2	Surface Characteristics and Microbiological Analysis of a Vat-Photopolymerization Additive-Manufacturing Dental Resin. Materials, 2022, 15, 425.	1.3	11
3	Impact of biofilm formation and azoles' susceptibility in Scedosporium/Lomentospora species using an in vitro model that mimics the cystic fibrosis patients' airway environment. Journal of Cystic Fibrosis, 2021, 20, 303-309.	0.3	9
4	Antimycotic nail polish based on humic acidâ€coated silver nanoparticles for onychomycosis. Journal of Chemical Technology and Biotechnology, 2021, 96, 2208-2218.	1.6	9
5	Silver(I) and Copper(II) Complexes of 1,10-Phenanthroline-5,6-Dione Against Phialophora verrucosa: A Focus on the Interaction With Human Macrophages and Galleria mellonella Larvae. Frontiers in Microbiology, 2021, 12, 641258.	1.5	12
6	Protease Inhibitors as Promising Weapons against COVID-19: Focus on Repurposing of Drugs used to Treat HIV and HCV Infections. Current Topics in Medicinal Chemistry, 2021, 21, 1429-1438.	1.0	1
7	Insights into the interaction of Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum, and Lomentospora prolificans with lung epithelial cells. Brazilian Journal of Microbiology, 2020, 51, 427-436.	0.8	5
8	Biofilms formed byScedosporiumandLomentosporaspecies: focus on the extracellular matrix. Biofouling, 2020, 36, 308-318.	0.8	7
9	Drug Repurposing Strategy against Fungal Biofilms. Current Topics in Medicinal Chemistry, 2020, 20, 509-516.	1.0	5
10	Saccharide sources do not influence the biofilm formation in <i>Scedosporium/Lomentospora</i> species. Experimental Results, 2020, 1, .	0.2	3
11	Biofilm Formed by Candida haemulonii Species Complex: Structural Analysis and Extracellular Matrix Composition. Journal of Fungi (Basel, Switzerland), 2020, 6, 46.	1.5	11
12	Fungal Infections in COVID-19-Positive Patients: A Lack of Optimal Treatment Options. Current Topics in Medicinal Chemistry, 2020, 20, 1951-1957.	1.0	24
13	Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. Fungal Biology Reviews, 2019, 33, 16-46.	1.9	28
14	Disarming Pseudomonas aeruginosa Virulence by the Inhibitory Action of 1,10-Phenanthroline-5,6-Dione-Based Compounds: Elastase B (LasB) as a Chemotherapeutic Target. Frontiers in Microbiology, 2019, 10, 1701.	1.5	41
15	Current Challenges and Updates on the Therapy of Fungal Infections. Current Topics in Medicinal Chemistry, 2019, 19, 495-499.	1.0	8
16	New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species. Current Topics in Medicinal Chemistry, 2019, 19, 2527-2553.	1.0	20
17	Surface properties, adhesion and biofilm formation on different surfaces by Scedosporium spp. and Lomentospora prolificans. Biofouling, 2018, 34, 800-814.	0.8	27
18	Ultrastructural viewpoints on the interaction events of Scedosporium apiospermum conidia with lung and macrophage cells. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180311.	0.8	6

#	Article	IF	CITATIONS
19	Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum and Lomentospora prolificans: a comparative study of surface molecules produced by conidial and germinated conidial cells. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180102.	0.8	6
20	Unprecedented in Vitro Antitubercular Activitiy of Manganese(II) Complexes Containing 1,10-Phenanthroline and Dicarboxylate Ligands: Increased Activity, Superior Selectivity, and Lower Toxicity in Comparison to Their Copper(II) Analogs. Frontiers in Microbiology, 2018, 9, 1432.	1.5	22
21	What are the advantages of living in a community? A microbial biofilm perspective!. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180212.	0.8	82
22	Antifungal Potential of Copper(II), Manganese(II) and Silver(I) 1,10-Phenanthroline Chelates Against Multidrug-Resistant Fungal Species Forming the Candida haemulonii Complex: Impact on the Planktonic and Biofilm Lifestyles. Frontiers in Microbiology, 2017, 8, 1257.	1.5	48
23	Fungal Biofilm – A Real Obstacle Against an Efficient Therapy: Lessons from Candida. Current Topics in Medicinal Chemistry, 2017, 17, 1987-2004.	1.0	32
24	Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 484-494.	0.8	15
25	Assessment of biofilm formation by <i>Scedosporium apiospermum</i> , <i>S. aurantiacum</i> , <i>S. minutisporum</i> and <i>Lomentospora prolificans</i> . Biofouling, 2016, 32, 737-749.	0.8	54
26	Biofilm: A Robust and Efficient Barrier to Antifungal Chemotherapy. Journal of Antimicrobial Agents, 2015, 01, .	0.2	8