Daiki Miyahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5180913/publications.pdf

Version: 2024-02-01

28 papers	527 citations	14 h-index	759306 22 g-index
32	32	32	36
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Card-Based ZKP for Connectivity: Applications to Nurikabe, Hitori, and Heyawake. New Generation Computing, 2022, 40, 149-171.	2.5	18
2	Physical zero-knowledge proof and NP-completeness proof of Suguru puzzle. Information and Computation, 2022, 285, 104858.	0.5	20
3	Card-based Single-shuffle Protocols for Secure Multiple-input AND and XOR Computations. , 2022, , .		9
4	Evaluating card-based protocols in terms of execution time. International Journal of Information Security, 2021, 20, 729-740.	2.3	6
5	A Secure Three-Input AND Protocol withÂaÂStandard Deck of Minimal Cards. Lecture Notes in Computer Science, 2021, , 242-256.	1.0	12
6	Efficient Generation of a Card-Based Uniformly Distributed Random Derangement. Lecture Notes in Computer Science, 2021, , 78-89.	1.0	7
7	Card-Based Covert Lottery. Lecture Notes in Computer Science, 2021, , 257-270.	1.0	10
8	New Card-based Copy Protocols Using Only Random Cuts. , 2021, , .		11
9	How to construct physical zero-knowledge proofs for puzzles with a "single loop―condition. Theoretical Computer Science, 2021, 888, 41-55.	0.5	26
10	Zero-Knowledge Proof Protocol forÂCryptarithmetic Using Dihedral Cards. Lecture Notes in Computer Science, 2021, , 51-67.	1.0	11
11	A Card-Minimal Three-Input ANDÂProtocol Using Two Shuffles. Lecture Notes in Computer Science, 2021, , 668-679.	1.0	9
12	Another Use ofÂtheÂFive-Card Trick: Card-Minimal Secure Three-Input Majority Function Evaluation. Lecture Notes in Computer Science, 2021, , 536-555.	1.0	8
13	Secure implementations of a random bisection cut. International Journal of Information Security, 2020, 19, 445-452.	2.3	34
14	Practical card-based implementations of Yao's millionaire protocol. Theoretical Computer Science, 2020, 803, 207-221.	0.5	34
15	Card-based protocols for secure ranking computations. Theoretical Computer Science, 2020, 845, 122-135.	0.5	19
16	Efficient card-based zero-knowledge proof for Sudoku. Theoretical Computer Science, 2020, 839, 135-142.	0.5	45
17	Public-PEZ Cryptography. Lecture Notes in Computer Science, 2020, , 59-74.	1.0	4
18	Six-Card Finite-Runtime XOR Protocol with Only Random Cut. , 2020, , .		12

#	Article	IF	CITATIONS
19	How to Implement a Non-uniform or Non-closed Shuffle. Lecture Notes in Computer Science, 2020, , $107-118$.	1.0	7
20	Interactive Physical Zero-Knowledge Proof for Norinori. Lecture Notes in Computer Science, 2019, , 166-177.	1.0	34
21	A Physical ZKP for Slitherlink: How to Perform Physical Topology-Preserving Computation. Lecture Notes in Computer Science, 2019, , 135-151.	1.0	17
22	Card-Based Protocol Against Actively Revealing Card Attack. Lecture Notes in Computer Science, 2019, , 95-106.	1.0	7
23	Card-Based Physical Zero-Knowledge Proof for Kakuro. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2019, E102.A, 1072-1078.	0.2	34
24	Physical Zero-Knowledge Proof for Makaro. Lecture Notes in Computer Science, 2018, , 111-125.	1.0	39
25	Analyzing Execution Time of Card-Based Protocols. Lecture Notes in Computer Science, 2018, , 145-158.	1.0	6
26	Practical and Easy-to-Understand Card-Based Implementation of Yao's Millionaire Protocol. Lecture Notes in Computer Science, 2018, , 246-261.	1.0	4
27	The Minimum Number of Cards in Practical Card-Based Protocols. Lecture Notes in Computer Science, 2017, , 126-155.	1.0	33
28	Actively revealing card attack on card-based protocols. Natural Computing, 0, , 1.	1.8	6