Stefan Heim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5180885/publications.pdf

Version: 2024-02-01

91 3,565 26 56
papers citations h-index g-index

102 102 102 4403 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neurolmage, 2006, 32, 570-582.	2.1	582
2	The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2458-2463.	3.3	572
3	A systems perspective on the effective connectivity of overt speech production. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 2399-2421.	1.6	182
4	Specialisation in Broca's region for semantic, phonological, and syntactic fluency?. NeuroImage, 2008, 40, 1362-1368.	2.1	163
5	The role of the left Brodmann's areas 44 and 45 in reading words and pseudowords. Cognitive Brain Research, 2005, 25, 982-993.	3.3	123
6	Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Human Brain Mapping, 2009, 30, 392-402.	1.9	113
7	Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Frontiers in Human Neuroscience, 2013, 7, 125.	1.0	87
8	Cognitive subtypes of dyslexia. Acta Neurobiologiae Experimentalis, 2008, 68, 73-82.	0.4	85
9	Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modelling. Neurolmage, 2009, 48, 616-624.	2.1	83
10	How reliable are gray matter disruptions in specific reading disability across multiple countries and languages? insights from a largeâ€scale voxelâ€based morphometry study. Human Brain Mapping, 2015, 36, 1741-1754.	1.9	67
11	Executive functions predict verbal fluency scores in healthy participants. Scientific Reports, 2020, 10, 11141.	1.6	63
12	Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume. Brain Structure and Function, 2014, 219, 1697-1707.	1.2	58
13	Interaction of phonological awareness and †magnocellular†processing during normal and dyslexic reading: behavioural and fMRI investigations. Dyslexia, 2010, 16, 258-282.	0.8	52
14	Cognition in Friedreich's ataxia: a behavioral and multimodal imaging study. Annals of Clinical and Translational Neurology, 2016, 3, 572-587.	1.7	50
15	Developmental Dyslexia and Dysgraphia: What can We Learn from the One About the Other?. Frontiers in Psychology, 2015, 6, 2045.	1.1	47
16	Are numbers special? Comparing the generation of verbal materials from ordered categories (months) to numbers and other categories (animals) in an fMRI study. Human Brain Mapping, 2008, 29, 894-909.	1.9	45
17	Left cytoarchitectonic area 44 supports selection in the mental lexicon during language production. Brain Structure and Function, 2009, 213, 441-456.	1.2	44
18	From a concept to a word in a syntactically complete sentence: An fMRI study on spontaneous language production in an overt picture description task. Neurolmage, 2012, 61, 702-714.	2.1	44

#	Article	IF	CITATIONS
19	Multi-parameter machine learning approach to the neuroanatomical basis of developmental dyslexia. Human Brain Mapping, 2017, 38, 900-908.	1.9	44
20	Differential role of the Mentalizing and the Mirror Neuron system in the imitation of communicative gestures. NeuroImage, 2013, 81, 294-305.	2.1	41
21	Head motion during overt language production in functional magnetic resonance imaging. NeuroReport, 2006, 17, 579-582.	0.6	37
22	Progressive cognitive dysfunction in spinocerebellar ataxia type 3. Movement Disorders, 2013, 28, 1435-1438.	2.2	36
23	Shared vs. specific brain activation changes in dyslexia after training of phonology, attention, or reading. Brain Structure and Function, 2015, 220, 2191-2207.	1.2	36
24	Effects of lexicality and word frequency on brain activation in dyslexic readers. Brain and Language, 2013, 125, 194-202.	0.8	34
25	Prosodic pitch accents in language comprehension and production: ERP data and acoustic analyses. Acta Neurobiologiae Experimentalis, 2006, 66, 55-68.	0.4	34
26	The time course of neurolinguistic and neuropsychological symptoms in three cases of logopenic primary progressive aphasia. Neuropsychologia, 2012, 50, 1708-1718.	0.7	33
27	The determiner congruency effect in language production investigated with functional MRI. Human Brain Mapping, 2009, 30, 928-940.	1.9	29
28	Word frequency effects in the left IFG in dyslexic and normally reading children during picture naming and reading. NeuroImage, 2011, 57, 1212-1220.	2.1	25
29	Identifying brain systems for gaze orienting during reading: fMRI investigation of the Landolt paradigm. Frontiers in Human Neuroscience, 2013, 7, 384.	1.0	25
30	Kindergarteners' performance in a sound–symbol paradigm predicts early reading. Journal of Experimental Child Psychology, 2015, 139, 256-264.	0.7	25
31	Modality-independent involvement of the left BA 44 during lexical decision making. Brain Structure and Function, 2007, 212, 95-106.	1.2	24
32	Cognitive levels of performance account for hemispheric lateralisation effects in dyslexic and normally reading children. NeuroImage, 2010, 53, 1346-1358.	2.1	24
33	The Role of Human Parietal Area 7A as a Link between Sequencing in Hand Actions and in Overt Speech Production. Frontiers in Psychology, 2012, 3, 534.	1.1	23
34	Bilingualism and "brain reserve― a matter of age. Neurobiology of Aging, 2019, 81, 157-165.	1.5	23
35	Comprehensive verbal fluency features predict executive function performance. Scientific Reports, 2021, 11, 6929.	1.6	23
36	Distinct neural signatures of cognitive subtypes of dyslexia with and without phonological deficits. NeuroImage: Clinical, 2013, 2, 477-490.	1.4	22

#	Article	IF	CITATIONS
37	Electrophysiological evidence for the magnocellularâ€dorsal pathway deficit in dyslexia. Developmental Science, 2011, 14, 873-880.	1.3	20
38	Processing word prosodyââ,¬â€behavioral and neuroimaging evidence for heterogeneous performance in a language with variable stress. Frontiers in Psychology, 2014, 5, 365.	1.1	20
39	Cross-cultural consistency and diversity in intrinsic functional organization of Broca's Region. Neurolmage, 2017, 150, 177-190.	2.1	20
40	Genderâ€specific contribution of a visual cognition network to reading abilities. British Journal of Psychology, 2012, 103, 117-128.	1.2	19
41	The Language–Number Interface in the Brain: A Complex Parametric Study of Quantifiers and Quantities. Frontiers in Evolutionary Neuroscience, 2012, 4, 4.	3.7	19
42	Syntactic gender processing in the human brain: A review and a model. Brain and Language, 2008, 106, 55-64.	0.8	18
43	Moral Concepts Set Decision Strategies to Abstract Values. PLoS ONE, 2011, 6, e18451.	1.1	18
44	A dual-route account for access to grammatical gender: evidence from functional MRI. Anatomy and Embryology, 2005, 210, 473-483.	1.5	17
45	Fingerprints of developmental dyslexia. Trends in Neuroscience and Education, 2012, 1, 10-14.	1.5	16
46	Is the Motor or the Garage More Important to the Car? The Difference Between Semantic Associations in Single Word and Sentence Production. Journal of Psycholinguistic Research, 2013, 42, 37-49.	0.7	16
47	The structure and dynamics of normal language processing: insights from neuroimaging. Acta Neurobiologiae Experimentalis, 2005, 65, 95-116.	0.4	16
48	Emotional Verbal Fluency: A New Task on Emotion and Executive Function Interaction. Behavioral Sciences (Basel, Switzerland), 2013, 3, 372-387.	1.0	15
49	Neural correlates of semantic associations in patients with schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2014, 264, 143-154.	1.8	15
50	Performance in Sound-Symbol Learning Predicts Reading Performance 3 Years Later. Frontiers in Psychology, 2018, 9, 1716.	1.1	15
51	BA 44 in Broca's area supports syntactic gender decisions in language production. NeuroReport, 2006, 17, 1097-1101.	0.6	14
52	Left cytoarchitectonic BA 44 processes syntactic gender violations in determiner phrases. Human Brain Mapping, 2010, 31, 1532-1541.	1.9	14
53	Devil in the details? Developmental dyslexia and visual long-term memory for details. Frontiers in Psychology, 2014, 5, 686.	1.1	14
54	The Influence of Handedness on Hemispheric Interaction During Word Production: Insights from Effective Connectivity Analysis. Brain Connectivity, 2011, 1, 219-231.	0.8	13

#	Article	IF	CITATIONS
55	Longitudinal changes in brains of patients with fluent primary progressive aphasia. Brain and Language, 2014, 131, 11-19.	0.8	13
56	Processing of Numerical and Proportional Quantifiers. Cognitive Science, 2015, 39, 1504-1536.	0.8	13
57	Determinants of Concurrent Motor and Language Recovery during Intensive Therapy in Chronic Stroke Patients: Four Single-Case Studies. Frontiers in Neurology, 2015, 6, 215.	1.1	13
58	Cognitive Profiles of Developmental Dysgraphia. Frontiers in Psychology, 2018, 9, 2006.	1.1	13
59	Deeper insights into semantic relations: An fMRI study of part-whole and functional associations. Brain and Language, 2014, 129, 30-42.	0.8	12
60	Development of Behavior Problems in Children with and without Specific Learning Disorders in Reading and Spelling from Kindergarten to Fifth Grade. Scientific Studies of Reading, 2020, 24, 57-71.	1.3	12
61	Neural representation of the sensorimotor speech–action-repository. Frontiers in Human Neuroscience, 2013, 7, 121.	1.0	11
62	High-resolution language mapping of Broca's region with transcranial magnetic stimulation. Brain Structure and Function, 2018, 223, 1297-1312.	1.2	11
63	Eliciting Dyslexic Symptoms in Proficient Readers by Simulating Deficits in Graphemeâ€toâ€Phoneme Conversion and Visuoâ€Magnocellular Processing. Dyslexia, 2011, 17, 268-281.	0.8	10
64	Dissociated Neural Processing for Decisions in Managers and Non-Managers. PLoS ONE, 2012, 7, e43537.	1.1	9
65	Sentence repetition deficits in the logopenic variant of PPA: linguistic analysis of longitudinal and cross-sectional data. Aphasiology, 2018, 32, 1445-1467.	1.4	9
66	Why the leash constrains the dog: the impact of semantic associations on sentence production. Acta Neurobiologiae Experimentalis, 2010, 70, 435-53.	0.4	9
67	Taboo: A Novel Paradigm to Elicit Aphasia-Like Trouble-Indicating Behaviour in Normally Speaking Individuals. Journal of Psycholinguistic Research, 2011, 40, 307-326.	0.7	8
68	The neural correlates of agrammatism: Evidence from aphasic and healthy speakers performing an overt picture description task. Frontiers in Psychology, 2014, 5, 246.	1.1	8
69	A Nap But Not Rest or Activity Consolidates Language Learning. Frontiers in Psychology, 2017, 8, 665.	1.1	8
70	Distinct neural signatures of cognitive subtypes of dyslexia: effects of lexicality during phonological processing. Acta Neurobiologiae Experimentalis, 2013, 73, 404-16.	0.4	8
71	"Few―or "Many� An Adaptation Level Theory Account for Flexibility in Quantifier Processing. Frontiers in Psychology, 2020, 11, 382.	1.1	7
72	Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Frontiers in Neuroscience, 2021, 15, 680762.	1.4	7

#	Article	IF	CITATIONS
73	If so many are "few,―how few are "many�. Frontiers in Psychology, 2015, 6, 441.	1.1	6
74	The role of phonological awareness in treatments of dyslexic primary school children. Acta Neurobiologiae Experimentalis, 2015, 75, 80-106.	0.4	6
75	How the brain learns how few are "many― An fMRI study of the flexibility of quantifier semantics. Neurolmage, 2016, 125, 45-52.	2.1	5
76	Phonological picture–word interference in language mapping with transcranial magnetic stimulation: an objective approach for functional parcellation of Broca's region. Brain Structure and Function, 2019, 224, 2027-2044.	1,2	5
77	Neuroanatomy of dyslexia: An allometric approach. European Journal of Neuroscience, 2020, 52, 3595-3609.	1.2	5
78	Experimental induction of reading difficulties in normal readers provides novel insights into the neurofunctional mechanisms of visual word recognition. Brain Structure and Function, 2014, 219, 461-471.	1,2	4
79	So Many Are "Few,―but so Few Are Also "Few―– Reduced Semantic Flexibility in bvFTD Patients. Frontiers in Psychology, 2020, 11, 582.	1.1	4
80	Reply to: Cognitive dysfunction in spinocerebellar ataxia type 3: Variable topographies and patterns. Movement Disorders, 2014, 29, 157-158.	2.2	3
81	The influence of semantic associations on sentence production in schizophrenia: an fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 2020, 270, 359-372.	1.8	3
82	Advances in experimental psychopatholinguistics: What can we learn from simulation of disorder-like symptoms in human volunteers?. Advances in Cognitive Psychology, 2013, 9, 102-11.	0.2	3
83	Hemispheric Dominance for Language and Side Effects in Mapping the Inferior Frontal Junction Area with Transcranial Magnetic Stimulation. Journal of Neurological Surgery, Part A: Central European Neurosurgery, 2020, 81, 130-137.	0.4	2
84	A linguistic complexity pattern that defies aging: The processing of multiple negations. Journal of Neurolinguistics, 2021, 58, 100982.	0.5	2
85	Adaptation of a semantic picture-word interference paradigm for future language mapping with transcranial magnetic stimulation: A behavioural study. Behavioural Brain Research, 2021, 412, 113418.	1.2	2
86	Focus on focus: The brainâ \in ^M s electrophysiological response to focus particles and accents in German. , 0, , .		2
87	Facial Emotion Recognition in Patients with Post-Paralytic Facial Synkinesisâ€"A Present Competence. Diagnostics, 2022, 12, 1138.	1.3	2
88	Mapping of functions to brain regions: A neuro-phonetic model of speech production, perception, and acquisition. Faits De Langues, 2011, 37, 203-212.	0.2	1
89	Reading without words or target detection? A re-analysis and replication fMRI study of the Landolt paradigm. Brain Structure and Function, 2018, 223, 3447-3461.	1.2	0
90	Neural correlates of spontaneous language production in two patients with right hemispheric language dominance. Aphasiology, 2021, 35, 1482-1504.	1.4	0

ARTICLE IF CITATIONS

91 Funktionelle Neuroanatomie der Sprache., 2013,, 425-441.