Nancy R Sottos

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5180744/nancy-r-sottos-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26,749 160 267 76 h-index g-index citations papers 286 9.6 29,523 7.14 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
267	Rapid multiple-front polymerization of fiber-reinforced polymer composites. <i>Composites Part A:</i> Applied Science and Manufacturing, 2022 , 106931	8.4	3
266	Sacrificial Cyclic Poly(phthalaldehyde) Templates for Low-Temperature Vascularization of Polymer Matrices. <i>ACS Applied Polymer Materials</i> , 2022 , 4, 479-487	4.3	
265	Anisotropic Foams Via Frontal Polymerization. Advanced Materials, 2021, e2105821	24	2
264	Spontaneous Patterning during Frontal Polymerization. ACS Central Science, 2021, 7, 603-612	16.8	8
263	Fast, reversible mechanochromism of regioisomeric oxazine mechanophores: Developing in situ responsive force probes for polymeric materials. <i>CheM</i> , 2021 , 7, 1080-1091	16.2	28
262	Rapid synchronized fabrication of vascularized thermosets and composites. <i>Nature Communications</i> , 2021 , 12, 2836	17.4	9
261	Survey of Catalysts for Frontal Ring-Opening Metathesis Polymerization. <i>Macromolecules</i> , 2021 , 54, 51	1 <i>7</i> 5. §12	3 8
260	Autonomous Strategies for Improved Performance and Reliability of Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003139	21.8	11
259	Autonomous Healing and Indication of Transverse Crack Damage in Carbon Fiber Composite Laminates. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2021 , 1-3	0.3	
258	In Situ Strain Measurement in Solid-State Li-Ion Battery Electrodes. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 010516	3.9	7
257	Single carbon fiber transverse electrical resistivity measurement via the van der Pauw method. <i>Journal of Applied Physics</i> , 2021 , 130, 115105	2.5	2
256	Localization of Spiropyran Activation. <i>Langmuir</i> , 2020 , 36, 5847-5854	4	2
255	Shock Wave Energy Dissipation in Catalyst-Free Poly(dimethylsiloxane) Vitrimers. <i>Macromolecules</i> , 2020 , 53, 4741-4747	5.5	13
254	A polarization reconfigurable microstrip patch antenna using liquid metal microfluidics. <i>Smart Materials and Structures</i> , 2020 , 29, 045032	3.4	1
253	Interfacial Force-Focusing Effect in Mechanophore-Linked Nanocomposites. <i>Advanced Science</i> , 2020 , 7, 1903464	13.6	14
252	Grand challenges in the design and manufacture of vascular self-healing. <i>Multifunctional Materials</i> , 2020 , 3, 013001	5.2	11
251	Triggered Transience of Plastic Materials by a Single Electron Transfer Mechanism. <i>ACS Central Science</i> , 2020 , 6, 266-273	16.8	12

(2019-2020)

250	Mechanophore-Functionalized Nanoparticles: Interfacial Force-Focusing Effect in Mechanophore-Linked Nanocomposites (Adv. Sci. 7/2020). <i>Advanced Science</i> , 2020 , 7, 2070037	13.6	78
249	Force-Modulated Equilibria of Mechanophore Metal Coordinate Bonds. <i>Chemistry of Materials</i> , 2020 , 32, 3869-3878	9.6	6
248	Cross-Linking Agents for Enhanced Performance of Thermosets Prepared via Frontal Ring-Opening Metathesis Polymerization. <i>Macromolecules</i> , 2020 , 53, 8360-8366	5.5	9
247	Rapid Synthesis of Elastomers and Thermosets with Tunable Thermomechanical Properties. <i>ACS Macro Letters</i> , 2020 , 9, 819-824	6.6	21
246	Frontal polymerization of unidirectional carbon-fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 130, 105689	8.4	21
245	Sunlight-Activated Self-Healing Polymer Coatings. <i>Advanced Engineering Materials</i> , 2020 , 22, 1901223	3.5	16
244	Photoexcitation of Grubbs Second-Generation Catalyst Initiates Frontal Ring-Opening Metathesis Polymerization. <i>ACS Macro Letters</i> , 2020 , 9, 1563-1568	6.6	9
243	Photothermal Initiation of Frontal Polymerization Using Carbon Nanoparticles. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4690-4696	4.3	11
242	Fabrication of pH-responsive monodisperse microcapsules using interfacial tension of immiscible phases. <i>Soft Matter</i> , 2020 , 16, 5139-5147	3.6	5
241	Digital Texture Voxels for Stretchable Morphing Skin Applications. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900260	6.8	12
240	Self-healing of impact damage in fiber-reinforced composites. <i>Composites Part B: Engineering</i> , 2019 , 173, 106808	10	11
239	Effect of Polymerized Ionic Liquid Structure and Morphology on Shockwave Energy Dissipation. <i>ACS Macro Letters</i> , 2019 , 535-539	6.6	8
238	Self-healing of fatigue damage in cross-ply glass/epoxy laminates. <i>Composites Science and Technology</i> , 2019 , 175, 122-127	8.6	18
237	Light-triggered thermal conductivity switching in azobenzene polymers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5973-5978	11.5	56
236	A Robust Patterning Technique for Electron Microscopy-Based Digital Image Correlation at Sub-Micron Resolutions. <i>Experimental Mechanics</i> , 2019 , 59, 1063-1073	2.6	14
235	Manufacture of carbon-fiber prepreg with thermoplastic/epoxy resin blends and microencapsulated solvent healing agents. <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 121, 365-375	8.4	13
234	Spatially Selective and Density-Controlled Activation of Interfacial Mechanophores. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4080-4085	16.4	31
233	Cathode/Electrolyte Interface-Dependent Changes in Stress and Strain in Lithium Iron Phosphate Composite Cathodes. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2707-A2714	3.9	4

232	Controlling Expansion in Lithium Manganese Oxide Composite Electrodes via Surface Modification. Journal of the Electrochemical Society, 2019 , 166, A2357-A2362	3.9	7
231	Strain and stress mapping by mechanochemical activation of spiropyran in poly(methyl methacrylate). <i>Strain</i> , 2019 , 55, e12310	1.7	16
230	Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 46226-46232	9.5	6
229	Tracking capsule activation and crack healing in a microcapsule-based self-healing polymer. <i>Scientific Reports</i> , 2019 , 9, 17773	4.9	12
228	Fully Recyclable Metastable Polymers and Composites. <i>Chemistry of Materials</i> , 2019 , 31, 398-406	9.6	31
227	Processing-dependent mechanical properties of solvent cast cyclic polyphthalaldehyde. <i>Polymer</i> , 2019 , 162, 29-34	3.9	6
226	Biomimetics: Restoration of Impact Damage in Polymers via a Hybrid Microcapsule Microvascular Self-Healing System (Adv. Funct. Mater. 2/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870012	15.6	2
225	Direct Detection of Manganese Ions in Organic Electrolyte by UV-vis Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A345-A348	3.9	9
224	Core-Shell Microcapsules Containing Flame Retardant Tris(2-chloroethyl phosphate) for Lithium-Ion Battery Applications. <i>ACS Omega</i> , 2018 , 3, 1609-1613	3.9	15
223	Cyclic Poly(phthalaldehyde): Thermoforming a Bulk Transient Material. ACS Macro Letters, 2018, 7, 47-	52 6.6	33
222	Interfacial Mechanophore Activation Using Laser-Induced Stress Waves. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5000-5003	16.4	26
		10.4	
221	Damage-Responsive Microcapsules for Amplified Photoacoustic Detection of Microcracks in Polymers. <i>Chemistry of Materials</i> , 2018 , 30, 2198-2202	9.6	17
221	Damage-Responsive Microcapsules for Amplified Photoacoustic Detection of Microcracks in	,	17
	Damage-Responsive Microcapsules for Amplified Photoacoustic Detection of Microcracks in Polymers. <i>Chemistry of Materials</i> , 2018 , 30, 2198-2202	9.6	
220	Damage-Responsive Microcapsules for Amplified Photoacoustic Detection of Microcracks in Polymers. <i>Chemistry of Materials</i> , 2018 , 30, 2198-2202 Strain Evolution in Lithium Manganese Oxide Electrodes. <i>Experimental Mechanics</i> , 2018 , 58, 561-571 Effect of microchannels on the crashworthiness of fiber-reinforced composites. <i>Composite</i>	9.6	20
220	Damage-Responsive Microcapsules for Amplified Photoacoustic Detection of Microcracks in Polymers. <i>Chemistry of Materials</i> , 2018 , 30, 2198-2202 Strain Evolution in Lithium Manganese Oxide Electrodes. <i>Experimental Mechanics</i> , 2018 , 58, 561-571 Effect of microchannels on the crashworthiness of fiber-reinforced composites. <i>Composite Structures</i> , 2018 , 184, 428-436 Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization.	9.6 2.6 5·3	20
220 219 218	Damage-Responsive Microcapsules for Amplified Photoacoustic Detection of Microcracks in Polymers. <i>Chemistry of Materials</i> , 2018 , 30, 2198-2202 Strain Evolution in Lithium Manganese Oxide Electrodes. <i>Experimental Mechanics</i> , 2018 , 58, 561-571 Effect of microchannels on the crashworthiness of fiber-reinforced composites. <i>Composite Structures</i> , 2018 , 184, 428-436 Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. <i>Nature</i> , 2018 , 557, 223-227 Restoration of Impact Damage in Polymers via a Hybrid Microcapsule Microvascular Self-Healing	9.6 2.6 5·3	20 13 161

214	Self-Protecting Epoxy Coatings with Anticorrosion Microcapsules. ACS Omega, 2018, 3, 14157-14164	3.9	20	
213	Enhanced Mixing of Microvascular Self-Healing Reagents Using Segmented Gas-Liquid Flow. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 10, 32659-32667	9.5	7	
212	Effects of interface roughness on cohesive strength of self-assembled monolayers. <i>Applied Surface Science</i> , 2017 , 397, 192-198	6.7	1	
211	Silicon Composite Electrodes with Dynamic Ionic Bonding. <i>Advanced Energy Materials</i> , 2017 , 7, 1700045	21.8	31	
210	Electrochemical Stiffness Changes in Lithium Manganese Oxide Electrodes. <i>Advanced Energy Materials</i> , 2017 , 7, 1601778	21.8	18	
209	Multi-scale model of effects of roughness on the cohesive strength of self-assembled monolayers. <i>International Journal of Fracture</i> , 2017 , 208, 131-143	2.3		
208	Alkyl Phosphite Inhibitors for Frontal Ring-Opening Metathesis Polymerization Greatly Increase Pot Life. <i>ACS Macro Letters</i> , 2017 , 6, 609-612	6.6	47	
207	Low-Ceiling-Temperature Polymer Microcapsules with Hydrophobic Payloads via Rapid Emulsion-Solvent Evaporation. <i>ACS Applied Materials & Applied M</i>	9.5	21	
206	Regenerative Polymeric Coatings Enabled by Pressure Responsive Surface Valves . <i>Advanced Engineering Materials</i> , 2017 , 19, 1700308	3.5	2	
205	Robust sacrificial polymer templates for 3D interconnected microvasculature in fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 100, 361-370	8.4	23	
204	A Microvascular System for the Autonomous Regeneration of Large Scale Damage in Polymeric Coatings . <i>Advanced Engineering Materials</i> , 2017 , 19, 1700319	3.5	5	
203	Time Release of Encapsulated Additives for Enhanced Performance of Lithium-Ion Batteries. <i>ACS Applied Materials & District Materials &</i>	9.5	8	
202	Manufacturing of unidirectional glass/epoxy prepreg with microencapsulated liquid healing agents. <i>Composites Science and Technology</i> , 2017 , 153, 190-197	8.6	15	
201	Repeated healing of delamination damage in vascular composites by pressurized delivery of reactive agents. <i>Composites Science and Technology</i> , 2017 , 151, 1-9	8.6	15	
200	Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 101, 432-443	8.4	52	
199	Comparison of Compression-After-Impact and Flexure-After-Impact protocols for 2D and 3D woven fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 101, 471-479	8.4	35	
198	A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission. <i>ACS Central Science</i> , 2016 , 2, 598-603	16.8	87	
197	Reversible and Irreversible Deformation Mechanisms of Composite Graphite Electrodes in Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1965-A1974	3.9	31	

196	Malleable and Recyclable Poly(urea-urethane) Thermosets bearing Hindered Urea Bonds. <i>Advanced Materials</i> , 2016 , 28, 7646-51	24	230
195	Effect of Mechanical Stress on Spiropyran-Merocyanine Reaction Kinetics in a Thermoplastic Polymer. <i>ACS Macro Letters</i> , 2016 , 5, 1312-1316	6.6	30
194	Characterization of core-shell microstructure and self-healing performance of electrospun fiber coatings. <i>Polymer</i> , 2016 , 107, 263-272	3.9	44
193	Active Cooling of a Microvascular Shape Memory Alloy-Polymer Matrix Composite Hybrid Material . <i>Advanced Engineering Materials</i> , 2016 , 18, 1145-1153	3.5	17
192	Autonomous Indication of Mechanical Damage in Polymeric Coatings. Advanced Materials, 2016, 28, 218	3 2- 94	76
191	Strategies for Volumetric Recovery of Large Scale Damage in Polymers. <i>Advanced Functional Materials</i> , 2016 , 26, 4561-4569	15.6	15
190	Polymers with autonomous life-cycle control. <i>Nature</i> , 2016 , 540, 363-370	50.4	215
189	A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials. Journal of Computational Physics, 2016 , 318, 373-390	4.1	14
188	Damage Detection: Autonomous Indication of Mechanical Damage in Polymeric Coatings (Adv. Mater. 11/2016). <i>Advanced Materials</i> , 2016 , 28, 2275-2275	24	4
187	Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 82, 170-179	8.4	14
186	Nanoscale mechanical tailoring of interfaces using self-assembled monolayers. <i>Mechanics of Materials</i> , 2016 , 98, 71-80	3.3	5
185	Automatic Optical Crack Tracking for Double Cantilever Beam Specimens. <i>Experimental Techniques</i> , 2016 , 40, 937-945	1.4	5
184	Regioisomer-Specific Mechanochromism of Naphthopyran in Polymeric Materials. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12328-31	16.4	117
183	Crystal Structure, Thermal Properties, and Shock-Wave-Induced Nucleation of 1,2-Bis(phenylethynyl)benzene. <i>Crystal Growth and Design</i> , 2016 , 16, 6148-6151	3.5	4
182	Electrochemical stiffness in lithium-ion batteries. <i>Nature Materials</i> , 2016 , 15, 1182-1187	27	85
181	Energy Absorption Behavior of Polyurea Under Laser-Induced Dynamic Mixed-Mode Loading. Journal of Dynamic Behavior of Materials, 2016 , 2, 379-390	1.8	8
180	Biopolymers: Multidimensional Vascularized Polymers using Degradable Sacrificial Templates (Adv. Funct. Mater. 7/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 1042-1042	15.6	
179	Retention of mechanical performance of polymer matrix composites above the glass transition temperature by vascular cooling. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 78, 412-4	 2 ⁸ .4	24

178	Self-healing thermoplastic-toughened epoxy. <i>Polymer</i> , 2015 , 74, 254-261	3.9	41
177	Repeatable self-healing of an epoxy matrix using imidazole initiated polymerization. <i>Polymer</i> , 2015 , 67, 174-184	3.9	41
176	Autonomic healing of PMMA via microencapsulated solvent. <i>Polymer</i> , 2015 , 69, 241-248	3.9	24
175	Core-shell polymeric microcapsules with superior thermal and solvent stability. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	68
174	Multidimensional Vascularized Polymers using Degradable Sacrificial Templates. <i>Advanced Functional Materials</i> , 2015 , 25, 1043-1052	15.6	48
173	Autonomic healing of acrylic bone cement. Advanced Healthcare Materials, 2015, 4, 202-7	10.1	16
172	Transient Electronics: Thermally Triggered Degradation of Transient Electronic Devices (Adv. Mater. 25/2015). <i>Advanced Materials</i> , 2015 , 27, 3782-3782	24	
171	Biomimetische Selbstheilung. <i>Angewandte Chemie</i> , 2015 , 127, 10572-10593	3.6	21
170	Thermally triggered degradation of transient electronic devices. <i>Advanced Materials</i> , 2015 , 27, 3783-8	24	122
169	Biomimetic Self-Healing. Angewandte Chemie - International Edition, 2015, 54, 10428-47	16.4	271
168	Shock-Induced Ordering in a Nano-segregated Network-Forming Ionic Liquid. <i>Journal of the American Chemical Society</i> , 2015 , 137, 16000-3	16.4	8
167	Electropolymerization of Microencapsulated 3-hexylthiophene for Lithium-Ion Battery Applications. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A373-A377	3.9	5
166	A NURBS-based interface-enriched generalized finite element method for problems with complex discontinuous gradient fields. <i>International Journal for Numerical Methods in Engineering</i> , 2015 , 101, 950	0 ⁻² 9 6 4	19
165	Shockwave loading of mechanochemically active polymer coatings. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 5350-5	9.5	61
164	Interfacial adhesion of photodefinable polyimide films on passivated silicon. <i>Thin Solid Films</i> , 2014 , 552, 116-123	2.2	29
163	Continuous self-healing life cycle in vascularized structural composites. <i>Advanced Materials</i> , 2014 , 26, 4302-8	24	167
162	Modeling mechanophore activation within a viscous rubbery network. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 63, 141-153	5	42
161	Restoration of large damage volumes in polymers. <i>Science</i> , 2014 , 344, 620-3	33.3	198

160	Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2014 , 59, 9-17	8.4	52
159	Triggered transience of metastable poly(phthalaldehyde) for transient electronics. <i>Advanced Materials</i> , 2014 , 26, 7637-42	24	139
158	Structural reinforcement of microvascular networks using electrostatic layer-by-layer assembly with halloysite nanotubes. <i>Soft Matter</i> , 2014 , 10, 544-8	3.6	26
157	Molecular tailoring of interfacial failure. <i>Langmuir</i> , 2014 , 30, 11096-102	4	19
156	Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres. <i>Journal of Power Sources</i> , 2014 , 269, 735-739	8.9	27
155	Fracture-induced activation in mechanophore-linked, rubber toughened PMMA. <i>Polymer</i> , 2014 , 55, 4164	1 3 1971	65
154	Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications. <i>Journal of Microencapsulation</i> , 2014 , 31, 350-4	3.4	48
153	Polymer mechanochemistry: Flex, release and repeat. <i>Nature Chemistry</i> , 2014 , 6, 381-3	17.6	27
152	The Effect of Polymer Chain Alignment and Relaxation on Force-Induced Chemical Reactions in an Elastomer. <i>Advanced Functional Materials</i> , 2014 , 24, 1529-1537	15.6	72
151	Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity. <i>Advanced Functional Materials</i> , 2014 , 24, 2947-2956	15.6	31
150	In Situ Measurements of Strains in Composite Battery Electrodes during Electrochemical Cycling. <i>Experimental Mechanics</i> , 2014 , 54, 971-985	2.6	111
149	Autonomic healing of carbon fiber/epoxy interfaces. <i>ACS Applied Materials & Description</i> (2014, 6, 6033-9)	9.5	58
148	Carbon Black: Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity (Adv. Funct. Mater. 20/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2922-2922	15.6	
147	Thermally stable autonomic healing in epoxy using a dual-microcapsule system. <i>Advanced Materials</i> , 2014 , 26, 282-7	24	156
146	Simultaneous Observation of Phase-Stepped Images for Photoelasticity Using Diffraction Gratings. <i>Experimental Mechanics</i> , 2013 , 53, 1343-1355	2.6	4
145	Microfluidically Switched Frequency-Reconfigurable Slot Antennas. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2013 , 12, 828-831	3.8	47
144	Self-Healing Epoxies and Their Composites 2013 , 361-380		9
143	Computational analysis of actively-cooled 3D woven microvascular composites using a stabilized interface-enriched generalized finite element method. <i>International Journal of Heat and Mass</i>	4.9	41

(2012-2013)

142	Full recovery of fiber/matrix interfacial bond strength using a microencapsulated solvent-based healing system. <i>Composites Science and Technology</i> , 2013 , 79, 1-7	8.6	47
141	Fracture behavior of a self-healing, toughened epoxy adhesive. <i>International Journal of Adhesion and Adhesives</i> , 2013 , 44, 157-165	3.4	76
140	High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion. Journal of the American Chemical Society, 2013 , 135, 7288-95	16.4	66
139	Interfacial adhesive properties between a rigid-rod pyromellitimide molecular layer and a covalent semiconductor via atomistic simulations. <i>ACS Applied Materials & Distriction (Continue of the Continue of </i>	9.5	7
138	Exploiting Force Sensitive Spiropyrans as Molecular Level Probes. <i>Macromolecules</i> , 2013 , 46, 3746-3752	5.5	109
137	Time-Dependent Mechanochemical Response of SP-Cross-Linked PMMA. <i>Macromolecules</i> , 2013 , 46, 891	7 5.8 92	153
136	Self-sealing of mechanical damage in a fully cured structural composite. <i>Composites Science and Technology</i> , 2013 , 79, 15-20	8.6	36
135	Self-healing thermoset using encapsulated epoxy-amine healing chemistry. <i>Polymer</i> , 2012 , 53, 581-587	3.9	267
134	Autonomic restoration of electrical conductivity. Advanced Materials, 2012, 24, 398-401	24	243
133	Self-Healing Circuits: Autonomic Restoration of Electrical Conductivity (Adv. Mater. 3/2012). <i>Advanced Materials</i> , 2012 , 24, 397-397	24	2
132	Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization. <i>ACS Applied Materials & Description (Materials & </i>	9.5	51
131	Role of Mechanophore Orientation in Mechanochemical Reactions ACS Macro Letters, 2012, 1, 163-166	5 6.6	90
130	Microvascular based self-healing polymeric foam. <i>Polymer</i> , 2012 , 53, 4231-4240	3.9	66
129	Mitigation of fatigue damage in self-healing vascular materials. <i>Polymer</i> , 2012 , 53, 5575-5581	3.9	23
128	A self-healing conductive ink. Advanced Materials, 2012, 24, 2578-81, 2509	24	135
127	Effects of chemical bonding on heat transport across interfaces. <i>Nature Materials</i> , 2012 , 11, 502-6	27	458
126	Proton-coupled mechanochemical transduction: a mechanogenerated acid. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12446-9	16.4	163
125	Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microspheres. <i>Advanced Energy Materials</i> , 2012 , 2, 583-590	21.8	130

124	Computational modeling and design of actively-cooled microvascular materials. <i>International Journal of Heat and Mass Transfer</i> , 2012 , 55, 5309-5321	4.9	36
123	Pressurized vascular systems for self-healing materials. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 1020-8	4.1	62
122	Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. <i>Applied Physics Letters</i> , 2012 , 101, 043106	3.4	44
121	Shear activation of mechanophore-crosslinked polymers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8381		141
120	Visual indication of mechanical damage using core-shell microcapsules. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2011 , 3, 4547-51	9.5	48
119	Triggered Release from Polymer Capsules. <i>Macromolecules</i> , 2011 , 44, 5539-5553	5.5	487
118	Silica-protected micron and sub-micron capsules and particles for self-healing at the microscale. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 82-7	4.8	64
117	Accelerated Self-Healing Via Ternary Interpenetrating Microvascular Networks. <i>Advanced Functional Materials</i> , 2011 , 21, 4320-4326	15.6	76
116	Three-dimensional microvascular fiber-reinforced composites. <i>Advanced Materials</i> , 2011 , 23, 3654-8	24	178
115	Hybrid Materials: Three-Dimensional Microvascular Fiber-Reinforced Composites (Adv. Mater. 32/2011). <i>Advanced Materials</i> , 2011 , 23, 3653-3653	24	1
114	Environmental effects on mechanochemical activation of spiropyran in linear PMMA. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8443		115
113	Characterizing the mechanochemically active domains in gem-dihalocyclopropanated polybutadiene under compression and tension. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8454		78
112	Adhesion promotion via noncovalent interactions in self-healing polymers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 3072-7	9.5	33
111	Structural health management technologies for inflatable/deployable structures: Integrating sensing and self-healing. <i>Acta Astronautica</i> , 2011 , 68, 883-903	2.9	36
110	Fracture and fatigue response of a self-healing epoxy adhesive. <i>Polymer</i> , 2011 , 52, 1628-1634	3.9	96
109	Self-healing Polymers and Composites. <i>American Scientist</i> , 2011 , 99, 392	2.7	36
108	Mechanical Characterization of Synthetic Vascular Materials. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2011 , 291-294	0.3	
107	Polymer Microvascular Network Composites. <i>Journal of Composite Materials</i> , 2010 , 44, 2587-2603	2.7	58

(2010-2010)

106	A Self-sealing Fiber-reinforced Composite. <i>Journal of Composite Materials</i> , 2010 , 44, 2573-2585	2.7	53
105	Force-induced redistribution of a chemical equilibrium. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16107-11	16.4	213
104	Self-Healing Polymers 2010 ,		8
103	Autonomic healing of low-velocity impact damage in fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2010 , 41, 360-368	8.4	137
102	Robust, double-walled microcapsules for self-healing polymeric materials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 1195-9	9.5	173
101	Programmable microcapsules from self-immolative polymers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10266-8	16.4	172
100	Microencapsulation of a Reactive Liquid-Phase Amine for Self-Healing Epoxy Composites. <i>Macromolecules</i> , 2010 , 43, 1855-1859	5.5	141
99	Masked cyanoacrylates unveiled by mechanical force. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4558-9	16.4	134
98	Self-Healing Polymers and Composites. Annual Review of Materials Research, 2010, 40, 179-211	12.8	990
97	Local Strain Concentrations in a Microvascular Network. Experimental Mechanics, 2010, 50, 255-263	2.6	25
96	Digital Image Correlation for Improved Detection of Basal Cell Carcinoma. <i>Experimental Mechanics</i> , 2010 , 50, 813-824	2.6	20
95	Dynamic delamination of patterned thin films: a numerical study. <i>International Journal of Fracture</i> , 2010 , 162, 77-90	2.3	18
94	Restoration of Conductivity with TTF-TCNQ Charge-Transfer Salts. <i>Advanced Functional Materials</i> , 2010 , 20, 1721-1727	15.6	114
93	Autonomic Recovery of Fiber/Matrix Interfacial Bond Strength in a Model Composite. <i>Advanced Functional Materials</i> , 2010 , 20, 3547-3554	15.6	58
92	Self-healing of internal damage in synthetic vascular materials. <i>Advanced Materials</i> , 2010 , 22, 5159-63	24	150
91	Self-healing of a high temperature cured epoxy using poly(dimethylsiloxane) chemistry. <i>Polymer</i> , 2010 , 51, 4063-4068	3.9	81
90	A hybrid experimental/numerical approach to characterize interfacial adhesion in multilayer low- thin film specimens. <i>Thin Solid Films</i> , 2010 , 519, 337-344	2.2	13
89	Evaluation of peroxide initiators for radical polymerization-based self-healing applications. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 2698-2708	2.5	55

88	Thermal strain measurement in sol-gel lead zirconate titanate thin films. <i>Journal of Applied Physics</i> , 2009 , 106, 123501	2.5	11
87	Self-healing flexible laminates for resealing of puncture damage. <i>Smart Materials and Structures</i> , 2009 , 18, 085001	3.4	57
86	Delivery of Two-Part Self-Healing Chemistry via Microvascular Networks. <i>Advanced Functional Materials</i> , 2009 , 19, 1399-1405	15.6	233
85	Self-Healing Materials with Interpenetrating Microvascular Networks. Advanced Materials, 2009, 21, 41	4 3 - ∤ 14	7305
84	Microcapsules filled with reactive solutions for self-healing materials. <i>Polymer</i> , 2009 , 50, 990-997	3.9	334
83	Characterization of Microvascular-Based Self-healing Coatings. <i>Experimental Mechanics</i> , 2009 , 49, 707-7	71:7 .6	108
82	Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. <i>Nature</i> , 2009 , 459, 68-72	50.4	1211
81	Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. <i>Polymer</i> , 2009 , 50, 5533-5538	3.9	151
80	Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate. <i>Journal of the Mechanics and Physics of Solids</i> , 2009 , 57, 51-66	5	16
79	Mechanically-induced chemical changes in polymeric materials. <i>Chemical Reviews</i> , 2009 , 109, 5755-98	68.1	969
78	Evaluation of Ruthenium Catalysts for Ring-Opening Metathesis Polymerization-Based Self-Healing Applications. <i>Chemistry of Materials</i> , 2008 , 20, 3288-3297	9.6	125
77	A new self-healing epoxy with tungsten (VI) chloride catalyst. <i>Journal of the Royal Society Interface</i> , 2008 , 5, 95-103	4.1	127
76	Microencapsulation of Isocyanates for Self-Healing Polymers. <i>Macromolecules</i> , 2008 , 41, 9650-9655	5.5	358
75	Peripherally decorated binary microcapsules containing two liquids. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5390		45
74	Bioinspired Materials for Self-Cleaning and Self-Healing. MRS Bulletin, 2008, 33, 732-741	3.2	93
73	Dynamic delamination of patterned thin films. <i>Applied Physics Letters</i> , 2008 , 93, 261902	3.4	24
72	Embedded Shape-Memory Alloy Wires for Improved Performance of Self-Healing Polymers. <i>Advanced Functional Materials</i> , 2008 , 18, 2253-2260	15.6	172
71	Full Recovery of Fracture Toughness Using a Nontoxic Solvent-Based Self-Healing System. <i>Advanced Functional Materials</i> , 2008 , 18, 1898-1904	15.6	218

70	Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers. <i>Polymer</i> , 2008 , 49, 3136-31	45 9	84
69	Nanocapsules for self-healing materials. <i>Composites Science and Technology</i> , 2008 , 68, 978-986	8.6	332
68	Adhesion strength measurement of polymer dielectric interfaces using laser spallation technique. <i>Thin Solid Films</i> , 2008 , 516, 7627-7635	2.2	43
67	Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films. <i>Engineering Fracture Mechanics</i> , 2008 , 75, 4217-4233	4.2	21
66	Introduction: self-healing polymers and composites. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 347-	84.1	63
65	Self-healing kinetics and the stereoisomers of dicyclopentadiene. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 389-93	4.1	96
64	Life extension of self-healing polymers with rapidly growing fatigue cracks. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 395-403	4.1	147
63	Effect of microcapsule size on the performance of self-healing polymers. <i>Polymer</i> , 2007 , 48, 3520-3529	3.9	374
62	Self-healing materials with microvascular networks. <i>Nature Materials</i> , 2007 , 6, 581-5	27	1198
61	Biasing reaction pathways with mechanical force. <i>Nature</i> , 2007 , 446, 423-7	50.4	611
60	Biasing reaction pathways with mechanical force. <i>Nature</i> , 2007 , 446, 423-7 Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation. <i>Experimental Mechanics</i> , 2007 , 47, 51-62	50.4	611
	Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image		
60	Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation. <i>Experimental Mechanics</i> , 2007 , 47, 51-62	2.6	166
60 59	Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation. <i>Experimental Mechanics</i> , 2007 , 47, 51-62 Cure-dependent Viscoelastic Poisson Ratio of Epoxy. <i>Experimental Mechanics</i> , 2007 , 47, 237-249	2.6	166 69
60 59 58	Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation. <i>Experimental Mechanics</i> , 2007 , 47, 51-62 Cure-dependent Viscoelastic Poisson Ratio of Epoxy. <i>Experimental Mechanics</i> , 2007 , 47, 237-249 Mechanophore-linked addition polymers. <i>Journal of the American Chemical Society</i> , 2007 , 129, 13808-9	2.6 2.6 16.4	16669296
60 59 58 57	Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation. <i>Experimental Mechanics</i> , 2007 , 47, 51-62 Cure-dependent Viscoelastic Poisson Ratio of Epoxy. <i>Experimental Mechanics</i> , 2007 , 47, 237-249 Mechanophore-linked addition polymers. <i>Journal of the American Chemical Society</i> , 2007 , 129, 13808-9 Solvent-Promoted Self-Healing Epoxy Materials. <i>Macromolecules</i> , 2007 , 40, 8830-8832 Mechanical Properties of Microcapsules Used in a Self-Healing Polymer. <i>Experimental Mechanics</i> ,	2.6 2.6 16.4	16669296245
60 59 58 57 56	Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation. <i>Experimental Mechanics</i> , 2007 , 47, 51-62 Cure-dependent Viscoelastic Poisson® Ratio of Epoxy. <i>Experimental Mechanics</i> , 2007 , 47, 237-249 Mechanophore-linked addition polymers. <i>Journal of the American Chemical Society</i> , 2007 , 129, 13808-9 Solvent-Promoted Self-Healing Epoxy Materials. <i>Macromolecules</i> , 2007 , 40, 8830-8832 Mechanical Properties of Microcapsules Used in a Self-Healing Polymer. <i>Experimental Mechanics</i> , 2006 , 46, 725-733 Catalyst Morphology and Dissolution Kinetics of Self-Healing Polymers. <i>Chemistry of Materials</i> ,	2.6 2.6 16.4 5.5	16669296245179

52	A spectral scheme for the simulation of dynamic mode 3 delamination of thin films. <i>Engineering Fracture Mechanics</i> , 2005 , 72, 1866-1891	4.2	8
51	Viscoelastic response of woven composite substrates. <i>Composites Science and Technology</i> , 2005 , 65, 62	1 & 84	22
50	Processing Effects for Integrated PZT: Residual Stress, Thickness, and Dielectric Properties. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2839-2847	3.8	68
49	Wax-Protected Catalyst Microspheres for Efficient Self-Healing Materials. <i>Advanced Materials</i> , 2005 , 17, 205-208	24	332
48	Solgel derived Pb(Zr,Ti)O3 thin films: Residual stress and electrical properties. <i>Journal of the European Ceramic Society</i> , 2005 , 25, 2247-2251	6	27
47	Effect of surface treatment on the hydrolytic stability of E-glass fiber bundle tensile strength. <i>Composites Science and Technology</i> , 2005 , 65, 129-136	8.6	36
46	Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite IPart I: Manual infiltration. <i>Composites Science and Technology</i> , 2005 , 65, 2466-2473	8.6	190
45	The effect of interfacial properties on damage evolution in model composites. <i>Polymer Composites</i> , 2005 , 26, 241-246	3	6
44	Stress effects in sol-gel derived ferroelectric thin films. <i>Journal of Applied Physics</i> , 2004 , 95, 629-634	2.5	82
43	Microcapsule induced toughening in a self-healing polymer composite. <i>Journal of Materials Science</i> , 2004 , 39, 1703-1710	4.3	522
42	Tensile and mixed-mode strength of a thin film-substrate interface under laser induced pulse loading. <i>Journal of the Mechanics and Physics of Solids</i> , 2004 , 52, 999-1022	5	44
41	In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. <i>Journal of Microencapsulation</i> , 2003 , 20, 719-30	3.4	339
40	Mixed-mode failure of thin films using laser-generated shear waves. <i>Experimental Mechanics</i> , 2003 , 43, 323-330	2.6	26
39	Letter from the technical editor. Experimental Mechanics, 2003, 43, 371-371	2.6	
38	Three-dimensional viscoelastic simulation of woven composite substrates for multilayer circuit boards. <i>Composites Science and Technology</i> , 2003 , 63, 1971-1983	8.6	32
37	In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. <i>Journal of Microencapsulation</i> , 2003 , 20, 719-730	3.4	581
36	Self-healing structural composite materials. <i>Composites Part A: Applied Science and Manufacturing</i> , 2003 , 34, 743-753	8.4	572
35	Residual Stress Effects in Ferroelectric Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 784, 321		3

(1998-2003)

34	Laser-induced decompression shock development in fused silica. <i>Journal of Applied Physics</i> , 2003 , 93, 9529-9536	2.5	38
33	Mixed-mode failure of thin films using laser-generated shear waves 2003 , 43, 323		1
32	A parametric study of laser induced thin film spallation. Experimental Mechanics, 2002, 42, 74-83	2.6	91
31	Fracture testing of a self-healing polymer composite. <i>Experimental Mechanics</i> , 2002 , 42, 372-379	2.6	511
30	A Novel Technique for Mixed-mode Thin Film Adhesion Measurement. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 750, 1		3
29	A parametric study of laser induced thin film spallation 2002 , 42, 74		5
28	Simulation of fiber debonding with friction in a model composite pushout test. <i>International Journal of Solids and Structures</i> , 2001 , 38, 8547-8562	3.1	61
27	Autonomic healing of polymer composites. <i>Nature</i> , 2001 , 409, 794-7	50.4	3147
26	Residual Stress Development during Relamination of Woven Composite Circuit Boards. <i>Journal of Composite Materials</i> , 2001 , 35, 905-927	2.7	6
25	In situdisplacement measurements and numerical predictions of embedded SMA transformation. <i>Smart Materials and Structures</i> , 2000 , 9, 701-710	3.4	9
24	Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films. <i>Journal of Applied Physics</i> , 2000 , 87, 3941-3949	2.5	126
23	High temperature fiber pushout of pristine and transversely fatigued SiC/Ti-6-4. <i>Journal of Materials Science</i> , 1999 , 34, 3471-3478	4.3	5
22	Application of debond length measurements to examine the mechanics of fiber pushout. <i>Journal of the Mechanics and Physics of Solids</i> , 1998 , 46, 1675-1697	5	37
21	Creep and relaxation behavior of woven glass/epoxy substrates for multilayer circuit board applications. <i>Polymer Composites</i> , 1998 , 19, 567-578	3	23
20	A comparison of calculated and measured debond lengths from fiber push-out tests. <i>Composites Science and Technology</i> , 1998 , 58, 1727-1739	8.6	22
19	The effect of residual stresses and sample preparation on progressive debonding during the fiber push-out test. <i>Composites Science and Technology</i> , 1998 , 58, 1741-1751	8.6	14
18	Dynamic surface displacement measurement in 1-3 and 1-1-3 piezocomposites. <i>Journal of Applied Physics</i> , 1998 , 84, 5725-5728	2.5	1
17	Transformation of Embedded Shape Memory Alloy Ribbons. <i>Journal of Intelligent Material Systems</i> and Structures, 1998 , 9, 379-390	2.3	25

16	Local displacements and load transfer in shape memory alloy composites. <i>Experimental Mechanics</i> , 1997 , 37, 78-86	2.6	65
15	Measurement of surface displacements in 1-3 and 1-1-3 piezocomposites. <i>Journal of Applied Physics</i> , 1996 , 79, 1707-1712	2.5	7
14	A design for optimizing the hydrostatic performance of 1B piezocomposites. <i>Ferroelectrics, Letters Section</i> , 1996 , 21, 41-46	0.5	5
13	Improving hydrostatic performance of 1-3 piezocomposites. <i>Journal of Applied Physics</i> , 1995 , 77, 4595-4	4603	29
12	Relationship Between Interphase Composition, Material Properties, and Residual Thermal Stresses in Composite Materials 1995 , 52, 101-113		18
11	Predictions of Static Displacements in 1-3 Piezocomposites. <i>Journal of Intelligent Material Systems and Structures</i> , 1995 , 6, 169-180	2.3	7
10	Transient Thermal Deformations of the Interphase in Polymer Composites 1995 , 53, 69-78		3
9	The Effects of Interphase Properties on Interfacial Shear Strength in Polymer Matrix Composites 1994 , 45, 105-124		9
8	Thermally Induced Interfacial Microcracking in Polymer Matrix Composites. <i>Journal of Composite Materials</i> , 1993 , 27, 1030-1051	2.7	35
7	The influence of interphase regions on local thermal displacements in composites. <i>Composites Science and Technology</i> , 1992 , 44, 319-332	8.6	31
6	The Influence of the Fiber/Matrix Interface on Local Glass Transition Temperature. <i>Studies in Polymer Science</i> , 1992 , 11, 339-358		2
5	Micro-interferometry for measurement of thermal displacements at fiber/matrix interfaces. <i>Experimental Mechanics</i> , 1991 , 31, 98-103	2.6	13
4	Recent Advances in Self-Healing Materials Systems247-260		3
3	Acid-Responsive Anticorrosion Microcapsules for Self-Protecting Coatings. <i>Macromolecular Chemistry and Physics</i> ,2100382	2.6	
2	Statistical Analysis of Failure in Polymer Matrix Composites1049-1056		
1	Self-Regulative Direct Ink Writing of Frontally Polymerizing Thermoset Polymers. <i>Advanced Materials Technologies</i> ,2200230	6.8	2