Nancy R Sottos

List of Publications by Citations

Source: https://exaly.com/author-pdf/5180744/nancy-r-sottos-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 267
 26,749
 76
 160

 papers
 citations
 h-index
 g-index

 286
 29,523
 9.6
 7.14

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
267	Autonomic healing of polymer composites. <i>Nature</i> , 2001 , 409, 794-7	50.4	3147
266	Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. <i>Nature</i> , 2009 , 459, 68-72	50.4	1211
265	Self-healing materials with microvascular networks. <i>Nature Materials</i> , 2007 , 6, 581-5	27	1198
264	Self-Healing Polymers and Composites. Annual Review of Materials Research, 2010, 40, 179-211	12.8	990
263	Mechanically-induced chemical changes in polymeric materials. <i>Chemical Reviews</i> , 2009 , 109, 5755-98	68.1	969
262	Biasing reaction pathways with mechanical force. <i>Nature</i> , 2007 , 446, 423-7	50.4	611
261	In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. <i>Journal of Microencapsulation</i> , 2003 , 20, 719-730	3.4	581
260	Self-healing structural composite materials. <i>Composites Part A: Applied Science and Manufacturing</i> , 2003 , 34, 743-753	8.4	572
259	Microcapsule induced toughening in a self-healing polymer composite. <i>Journal of Materials Science</i> , 2004 , 39, 1703-1710	4.3	522
258	Fracture testing of a self-healing polymer composite. Experimental Mechanics, 2002, 42, 372-379	2.6	511
257	Triggered Release from Polymer Capsules. <i>Macromolecules</i> , 2011 , 44, 5539-5553	5.5	487
256	Effects of chemical bonding on heat transport across interfaces. <i>Nature Materials</i> , 2012 , 11, 502-6	27	458
255	Effect of microcapsule size on the performance of self-healing polymers. <i>Polymer</i> , 2007 , 48, 3520-3529	3.9	374
254	Microencapsulation of Isocyanates for Self-Healing Polymers. <i>Macromolecules</i> , 2008 , 41, 9650-9655	5.5	358
253	In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. <i>Journal of Microencapsulation</i> , 2003 , 20, 719-30	3.4	339
252	Microcapsules filled with reactive solutions for self-healing materials. <i>Polymer</i> , 2009 , 50, 990-997	3.9	334
251	Nanocapsules for self-healing materials. <i>Composites Science and Technology</i> , 2008 , 68, 978-986	8.6	332

(2010-2005)

250	Wax-Protected Catalyst Microspheres for Efficient Self-Healing Materials. <i>Advanced Materials</i> , 2005 , 17, 205-208	24	332
249	Self-Healing Materials with Interpenetrating Microvascular Networks. Advanced Materials, 2009, 21, 414	1 3 -∤14	7 305
248	Mechanophore-linked addition polymers. Journal of the American Chemical Society, 2007, 129, 13808-9	16.4	296
247	Biomimetic Self-Healing. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10428-47	16.4	271
246	Self-healing thermoset using encapsulated epoxy-amine healing chemistry. <i>Polymer</i> , 2012 , 53, 581-587	3.9	267
245	Solvent-Promoted Self-Healing Epoxy Materials. <i>Macromolecules</i> , 2007 , 40, 8830-8832	5.5	245
244	Autonomic restoration of electrical conductivity. Advanced Materials, 2012, 24, 398-401	24	243
243	Delivery of Two-Part Self-Healing Chemistry via Microvascular Networks. <i>Advanced Functional Materials</i> , 2009 , 19, 1399-1405	15.6	233
242	Malleable and Recyclable Poly(urea-urethane) Thermosets bearing Hindered Urea Bonds. <i>Advanced Materials</i> , 2016 , 28, 7646-51	24	230
241	Full Recovery of Fracture Toughness Using a Nontoxic Solvent-Based Self-Healing System. <i>Advanced Functional Materials</i> , 2008 , 18, 1898-1904	15.6	218
240	Polymers with autonomous life-cycle control. <i>Nature</i> , 2016 , 540, 363-370	50.4	215
239	Force-induced redistribution of a chemical equilibrium. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16107-11	16.4	213
238	Restoration of large damage volumes in polymers. <i>Science</i> , 2014 , 344, 620-3	33.3	198
237	Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite Part I: Manual infiltration. <i>Composites Science and Technology</i> , 2005 , 65, 2466-2473	8.6	190
236	Mechanical Properties of Microcapsules Used in a Self-Healing Polymer. <i>Experimental Mechanics</i> , 2006 , 46, 725-733	2.6	179
235	Three-dimensional microvascular fiber-reinforced composites. <i>Advanced Materials</i> , 2011 , 23, 3654-8	24	178
234	Catalyst Morphology and Dissolution Kinetics of Self-Healing Polymers. <i>Chemistry of Materials</i> , 2006 , 18, 1312-1317	9.6	176
233	Robust, double-walled microcapsules for self-healing polymeric materials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 1195-9	9.5	173

232	Programmable microcapsules from self-immolative polymers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10266-8	16.4	172
231	Embedded Shape-Memory Alloy Wires for Improved Performance of Self-Healing Polymers. <i>Advanced Functional Materials</i> , 2008 , 18, 2253-2260	15.6	172
230	Continuous self-healing life cycle in vascularized structural composites. <i>Advanced Materials</i> , 2014 , 26, 4302-8	24	167
229	Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation. <i>Experimental Mechanics</i> , 2007 , 47, 51-62	2.6	166
228	Proton-coupled mechanochemical transduction: a mechanogenerated acid. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12446-9	16.4	163
227	Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. <i>Nature</i> , 2018 , 557, 223-227	50.4	161
226	Thermally stable autonomic healing in epoxy using a dual-microcapsule system. <i>Advanced Materials</i> , 2014 , 26, 282-7	24	156
225	Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. <i>Polymer</i> , 2009 , 50, 5533-5538	3.9	151
224	Self-healing of internal damage in synthetic vascular materials. <i>Advanced Materials</i> , 2010 , 22, 5159-63	24	150
223	Life extension of self-healing polymers with rapidly growing fatigue cracks. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 395-403	4.1	147
222	Shear activation of mechanophore-crosslinked polymers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8381		141
221	Microencapsulation of a Reactive Liquid-Phase Amine for Self-Healing Epoxy Composites. <i>Macromolecules</i> , 2010 , 43, 1855-1859	5.5	141
220	Triggered transience of metastable poly(phthalaldehyde) for transient electronics. <i>Advanced Materials</i> , 2014 , 26, 7637-42	24	139
219	Autonomic healing of low-velocity impact damage in fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2010 , 41, 360-368	8.4	137
218	A self-healing conductive ink. Advanced Materials, 2012, 24, 2578-81, 2509	24	135
217	Masked cyanoacrylates unveiled by mechanical force. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4558-9	16.4	134
216	Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microspheres. <i>Advanced Energy Materials</i> , 2012 , 2, 583-590	21.8	130
215	A new self-healing epoxy with tungsten (VI) chloride catalyst. <i>Journal of the Royal Society Interface</i> , 2008 , 5, 95-103	4.1	127

(2008-2000)

214	Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films. <i>Journal of Applied Physics</i> , 2000 , 87, 3941-3949	2.5	126
213	Evaluation of Ruthenium Catalysts for Ring-Opening Metathesis Polymerization-Based Self-Healing Applications. <i>Chemistry of Materials</i> , 2008 , 20, 3288-3297	9.6	125
212	Thermally triggered degradation of transient electronic devices. <i>Advanced Materials</i> , 2015 , 27, 3783-8	24	122
211	Regioisomer-Specific Mechanochromism of Naphthopyran in Polymeric Materials. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12328-31	16.4	117
210	Environmental effects on mechanochemical activation of spiropyran in linear PMMA. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8443		115
209	Restoration of Conductivity with TTF-TCNQ Charge-Transfer Salts. <i>Advanced Functional Materials</i> , 2010 , 20, 1721-1727	15.6	114
208	Fatigue crack propagation in microcapsule-toughened epoxy. Journal of Materials Science, 2006, 41, 626	5 6 6927.	3112
207	In Situ Measurements of Strains in Composite Battery Electrodes during Electrochemical Cycling. <i>Experimental Mechanics</i> , 2014 , 54, 971-985	2.6	111
206	Exploiting Force Sensitive Spiropyrans as Molecular Level Probes. <i>Macromolecules</i> , 2013 , 46, 3746-3752	5.5	109
205	Characterization of Microvascular-Based Self-healing Coatings. Experimental Mechanics, 2009, 49, 707-7	12 .6	108
204	Fracture and fatigue response of a self-healing epoxy adhesive. <i>Polymer</i> , 2011 , 52, 1628-1634	3.9	96
203	Self-healing kinetics and the stereoisomers of dicyclopentadiene. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 389-93	4.1	96
202	Bioinspired Materials for Self-Cleaning and Self-Healing. MRS Bulletin, 2008, 33, 732-741	3.2	93
201	A parametric study of laser induced thin film spallation. <i>Experimental Mechanics</i> , 2002 , 42, 74-83	2.6	91
200	Role of Mechanophore Orientation in Mechanochemical Reactions ACS Macro Letters, 2012, 1, 163-166	6.6	90
199	A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission. <i>ACS Central Science</i> , 2016 , 2, 598-603	16.8	87
198	Electrochemical stiffness in lithium-ion batteries. <i>Nature Materials</i> , 2016 , 15, 1182-1187	27	85
197	Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers. <i>Polymer</i> , 2008 , 49, 3136-31	45 9	84

196	Stress effects in sol-gel derived ferroelectric thin films. <i>Journal of Applied Physics</i> , 2004 , 95, 629-634	2.5	82
195	Self-healing of a high temperature cured epoxy using poly(dimethylsiloxane) chemistry. <i>Polymer</i> , 2010 , 51, 4063-4068	3.9	81
194	Mechanophore-Functionalized Nanoparticles: Interfacial Force-Focusing Effect in Mechanophore-Linked Nanocomposites (Adv. Sci. 7/2020). <i>Advanced Science</i> , 2020 , 7, 2070037	13.6	78
193	Characterizing the mechanochemically active domains in gem-dihalocyclopropanated polybutadiene under compression and tension. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8454		78
192	Autonomous Indication of Mechanical Damage in Polymeric Coatings. Advanced Materials, 2016, 28, 218	3 2- 94	76
191	Fracture behavior of a self-healing, toughened epoxy adhesive. <i>International Journal of Adhesion and Adhesives</i> , 2013 , 44, 157-165	3.4	76
190	Accelerated Self-Healing Via Ternary Interpenetrating Microvascular Networks. <i>Advanced Functional Materials</i> , 2011 , 21, 4320-4326	15.6	76
189	Mechanical Reactivity of Two Different Spiropyran Mechanophores in Polydimethylsiloxane. <i>Macromolecules</i> , 2018 , 51, 9177-9183	5.5	75
188	The Effect of Polymer Chain Alignment and Relaxation on Force-Induced Chemical Reactions in an Elastomer. <i>Advanced Functional Materials</i> , 2014 , 24, 1529-1537	15.6	72
187	Cure-dependent Viscoelastic Poisson Ratio of Epoxy. Experimental Mechanics, 2007, 47, 237-249	2.6	69
186	Core-shell polymeric microcapsules with superior thermal and solvent stability. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	68
185	Processing Effects for Integrated PZT: Residual Stress, Thickness, and Dielectric Properties. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2839-2847	3.8	68
184	Microvascular based self-healing polymeric foam. <i>Polymer</i> , 2012 , 53, 4231-4240	3.9	66
183	High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion. Journal of the American Chemical Society, 2013 , 135, 7288-95	16.4	66
182	Fracture-induced activation in mechanophore-linked, rubber toughened PMMA. <i>Polymer</i> , 2014 , 55, 416	4 3 4971	65
181	Local displacements and load transfer in shape memory alloy composites. <i>Experimental Mechanics</i> , 1997 , 37, 78-86	2.6	65
180	Silica-protected micron and sub-micron capsules and particles for self-healing at the microscale. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 82-7	4.8	64
179	Introduction: self-healing polymers and composites. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 347-	84.1	63

(2011-2012)

178	Pressurized vascular systems for self-healing materials. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 1020-8	4.1	62	
177	Shockwave loading of mechanochemically active polymer coatings. <i>ACS Applied Materials & ACS Applied & ACS ACS Applied & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	61	
176	Simulation of fiber debonding with friction in a model composite pushout test. <i>International Journal of Solids and Structures</i> , 2001 , 38, 8547-8562	3.1	61	
175	Autonomic healing of carbon fiber/epoxy interfaces. ACS Applied Materials & amp; Interfaces, 2014, 6, 6033-9	9.5	58	
174	Polymer Microvascular Network Composites. <i>Journal of Composite Materials</i> , 2010 , 44, 2587-2603	2.7	58	
173	Autonomic Recovery of Fiber/Matrix Interfacial Bond Strength in a Model Composite. <i>Advanced Functional Materials</i> , 2010 , 20, 3547-3554	15.6	58	
172	Self-healing flexible laminates for resealing of puncture damage. <i>Smart Materials and Structures</i> , 2009 , 18, 085001	3.4	57	
171	Light-triggered thermal conductivity switching in azobenzene polymers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5973-5978	11.5	56	
170	Evaluation of peroxide initiators for radical polymerization-based self-healing applications. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 2698-2708	2.5	55	
169	Fluorescent image correlation for nanoscale deformation measurements. <i>Small</i> , 2006 , 2, 631-5	11	55	
168	Time-Dependent Mechanochemical Response of SP-Cross-Linked PMMA. <i>Macromolecules</i> , 2013 , 46, 89	1 <i>7</i> 5. § 92	153	
167	A Self-sealing Fiber-reinforced Composite. <i>Journal of Composite Materials</i> , 2010 , 44, 2573-2585	2.7	53	
166	Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2014 , 59, 9-17	8.4	52	
165	Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 101, 432-443	8.4	52	
164	Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 503-9	9.5	51	
163	Multidimensional Vascularized Polymers using Degradable Sacrificial Templates. <i>Advanced Functional Materials</i> , 2015 , 25, 1043-1052	15.6	48	
162	Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications. <i>Journal of Microencapsulation</i> , 2014 , 31, 350-4	3.4	48	
161	Visual indication of mechanical damage using core-shell microcapsules. <i>ACS Applied Materials & Interfaces</i> , 2011 , 3, 4547-51	9.5	48	

160	Alkyl Phosphite Inhibitors for Frontal Ring-Opening Metathesis Polymerization Greatly Increase Pot Life. <i>ACS Macro Letters</i> , 2017 , 6, 609-612	6.6	47
159	Microfluidically Switched Frequency-Reconfigurable Slot Antennas. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2013 , 12, 828-831	3.8	47
158	Full recovery of fiber/matrix interfacial bond strength using a microencapsulated solvent-based healing system. <i>Composites Science and Technology</i> , 2013 , 79, 1-7	8.6	47
157	Peripherally decorated binary microcapsules containing two liquids. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5390		45
156	Characterization of core-shell microstructure and self-healing performance of electrospun fiber coatings. <i>Polymer</i> , 2016 , 107, 263-272	3.9	44
155	Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. <i>Applied Physics Letters</i> , 2012 , 101, 043106	3.4	44
154	Tensile and mixed-mode strength of a thin film-substrate interface under laser induced pulse loading. <i>Journal of the Mechanics and Physics of Solids</i> , 2004 , 52, 999-1022	5	44
153	Adhesion strength measurement of polymer dielectric interfaces using laser spallation technique. <i>Thin Solid Films</i> , 2008 , 516, 7627-7635	2.2	43
152	Modeling mechanophore activation within a viscous rubbery network. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 63, 141-153	5	42
151	Self-healing thermoplastic-toughened epoxy. <i>Polymer</i> , 2015 , 74, 254-261	3.9	41
150	Repeatable self-healing of an epoxy matrix using imidazole initiated polymerization. <i>Polymer</i> , 2015 , 67, 174-184	3.9	41
149	Computational analysis of actively-cooled 3D woven microvascular composites using a stabilized interface-enriched generalized finite element method. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 65, 153-164	4.9	41
148	Laser-induced decompression shock development in fused silica. <i>Journal of Applied Physics</i> , 2003 , 93, 9529-9536	2.5	38
147	Application of debond length measurements to examine the mechanics of fiber pushout. <i>Journal of the Mechanics and Physics of Solids</i> , 1998 , 46, 1675-1697	5	37
146	Computational modeling and design of actively-cooled microvascular materials. <i>International Journal of Heat and Mass Transfer</i> , 2012 , 55, 5309-5321	4.9	36
145	Self-sealing of mechanical damage in a fully cured structural composite. <i>Composites Science and Technology</i> , 2013 , 79, 15-20	8.6	36
144	Structural health management technologies for inflatable/deployable structures: Integrating sensing and self-healing. <i>Acta Astronautica</i> , 2011 , 68, 883-903	2.9	36
143	Effect of surface treatment on the hydrolytic stability of E-glass fiber bundle tensile strength. <i>Composites Science and Technology</i> , 2005 , 65, 129-136	8.6	36

142	Self-healing Polymers and Composites. <i>American Scientist</i> , 2011 , 99, 392	2.7	36
141	Comparison of Compression-After-Impact and Flexure-After-Impact protocols for 2D and 3D woven fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 101, 471-479	8.4	35
140	Thermally Induced Interfacial Microcracking in Polymer Matrix Composites. <i>Journal of Composite Materials</i> , 1993 , 27, 1030-1051	2.7	35
139	Restoration of Impact Damage in Polymers via a Hybrid MicrocapsuleMicrovascular Self-Healing System. <i>Advanced Functional Materials</i> , 2018 , 28, 1704197	15.6	34
138	Cyclic Poly(phthalaldehyde): Thermoforming a Bulk Transient Material. ACS Macro Letters, 2018, 7, 47-5	2 6.6	33
137	Adhesion promotion via noncovalent interactions in self-healing polymers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 3072-7	9.5	33
136	Three-dimensional viscoelastic simulation of woven composite substrates for multilayer circuit boards. <i>Composites Science and Technology</i> , 2003 , 63, 1971-1983	8.6	32
135	Silicon Composite Electrodes with Dynamic Ionic Bonding. Advanced Energy Materials, 2017, 7, 1700045	21.8	31
134	Spatially Selective and Density-Controlled Activation of Interfacial Mechanophores. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4080-4085	16.4	31
133	Reversible and Irreversible Deformation Mechanisms of Composite Graphite Electrodes in Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1965-A1974	3.9	31
132	Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity. <i>Advanced Functional Materials</i> , 2014 , 24, 2947-2956	15.6	31
131	The influence of interphase regions on local thermal displacements in composites. <i>Composites Science and Technology</i> , 1992 , 44, 319-332	8.6	31
130	Fully Recyclable Metastable Polymers and Composites. <i>Chemistry of Materials</i> , 2019 , 31, 398-406	9.6	31
129	Effect of Mechanical Stress on Spiropyran-Merocyanine Reaction Kinetics in a Thermoplastic Polymer. <i>ACS Macro Letters</i> , 2016 , 5, 1312-1316	6.6	30
128	Interfacial adhesion of photodefinable polyimide films on passivated silicon. <i>Thin Solid Films</i> , 2014 , 552, 116-123	2.2	29
127	Improving hydrostatic performance of 1-3 piezocomposites. <i>Journal of Applied Physics</i> , 1995 , 77, 4595-4	603	29
126	Fast, reversible mechanochromism of regioisomeric oxazine mechanophores: Developing in situ responsive force probes for polymeric materials. <i>CheM</i> , 2021 , 7, 1080-1091	16.2	28
125	Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres. <i>Journal of Power Sources</i> , 2014 , 269, 735-739	8.9	27

124	Polymer mechanochemistry: Flex, release and repeat. <i>Nature Chemistry</i> , 2014 , 6, 381-3	17.6	27
123	Solgel derived Pb(Zr,Ti)O3 thin films: Residual stress and electrical properties. <i>Journal of the European Ceramic Society</i> , 2005 , 25, 2247-2251	6	27
122	Interfacial Mechanophore Activation Using Laser-Induced Stress Waves. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5000-5003	16.4	26
121	Structural reinforcement of microvascular networks using electrostatic layer-by-layer assembly with halloysite nanotubes. <i>Soft Matter</i> , 2014 , 10, 544-8	3.6	26
120	Mixed-mode failure of thin films using laser-generated shear waves. <i>Experimental Mechanics</i> , 2003 , 43, 323-330	2.6	26
119	Local Strain Concentrations in a Microvascular Network. <i>Experimental Mechanics</i> , 2010 , 50, 255-263	2.6	25
118	Transformation of Embedded Shape Memory Alloy Ribbons. <i>Journal of Intelligent Material Systems and Structures</i> , 1998 , 9, 379-390	2.3	25
117	Retention of mechanical performance of polymer matrix composites above the glass transition temperature by vascular cooling. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 78, 412-4	2 ⁸ .4	24
116	Autonomic healing of PMMA via microencapsulated solvent. <i>Polymer</i> , 2015 , 69, 241-248	3.9	24
115	Dynamic delamination of patterned thin films. <i>Applied Physics Letters</i> , 2008 , 93, 261902	3.4	24
114	Robust sacrificial polymer templates for 3D interconnected microvasculature in fiber-reinforced composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 100, 361-370	8.4	23
113	Mitigation of fatigue damage in self-healing vascular materials. <i>Polymer</i> , 2012 , 53, 5575-5581	3.9	23
112	Creep and relaxation behavior of woven glass/epoxy substrates for multilayer circuit board applications. <i>Polymer Composites</i> , 1998 , 19, 567-578	3	23
111	Autonomous Damage Detection in Multilayered Coatings via Integrated Aggregation-Induced Emission Luminogens. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40361-40365	9.5	23
110	A comparison of calculated and measured debond lengths from fiber push-out tests. <i>Composites Science and Technology</i> , 1998 , 58, 1727-1739	8.6	22
109	Viscoelastic response of woven composite substrates. <i>Composites Science and Technology</i> , 2005 , 65, 62	1&64	22
108	Low-Ceiling-Temperature Polymer Microcapsules with Hydrophobic Payloads via Rapid Emulsion-Solvent Evaporation. <i>ACS Applied Materials & Description Action</i> (2011) 123	9.5	21
107	Biomimetische Selbstheilung. <i>Angewandte Chemie</i> , 2015 , 127, 10572-10593	3.6	21

106	Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films. <i>Engineering Fracture Mechanics</i> , 2008 , 75, 4217-4233	4.2	21
105	Rapid Synthesis of Elastomers and Thermosets with Tunable Thermomechanical Properties. <i>ACS Macro Letters</i> , 2020 , 9, 819-824	6.6	21
104	Frontal polymerization of unidirectional carbon-fiber-reinforced composites. <i>Composites Part A:</i> Applied Science and Manufacturing, 2020 , 130, 105689	8.4	21
103	Strain Evolution in Lithium Manganese Oxide Electrodes. <i>Experimental Mechanics</i> , 2018 , 58, 561-571	2.6	20
102	Digital Image Correlation for Improved Detection of Basal Cell Carcinoma. <i>Experimental Mechanics</i> , 2010 , 50, 813-824	2.6	20
101	Self-Protecting Epoxy Coatings with Anticorrosion Microcapsules. ACS Omega, 2018, 3, 14157-14164	3.9	20
100	Molecular tailoring of interfacial failure. <i>Langmuir</i> , 2014 , 30, 11096-102	4	19
99	A NURBS-based interface-enriched generalized finite element method for problems with complex discontinuous gradient fields. <i>International Journal for Numerical Methods in Engineering</i> , 2015 , 101, 950	0 -296 4	19
98	Electrochemical Stiffness Changes in Lithium Manganese Oxide Electrodes. <i>Advanced Energy Materials</i> , 2017 , 7, 1601778	21.8	18
97	Self-healing of fatigue damage in cross-ply glass/epoxy laminates. <i>Composites Science and Technology</i> , 2019 , 175, 122-127	8.6	18
96	Dynamic delamination of patterned thin films: a numerical study. <i>International Journal of Fracture</i> , 2010 , 162, 77-90	2.3	18
95	Relationship Between Interphase Composition, Material Properties, and Residual Thermal Stresses in Composite Materials 1995 , 52, 101-113		18
94	Damage-Responsive Microcapsules for Amplified Photoacoustic Detection of Microcracks in Polymers. <i>Chemistry of Materials</i> , 2018 , 30, 2198-2202	9.6	17
93	Active Cooling of a Microvascular Shape Memory Alloy-Polymer Matrix Composite Hybrid Material . <i>Advanced Engineering Materials</i> , 2016 , 18, 1145-1153	3.5	17
92	Autonomic healing of acrylic bone cement. Advanced Healthcare Materials, 2015, 4, 202-7	10.1	16
91	Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate. <i>Journal of the Mechanics and Physics of Solids</i> , 2009 , 57, 51-66	5	16
90	Sunlight-Activated Self-Healing Polymer Coatings. <i>Advanced Engineering Materials</i> , 2020 , 22, 1901223	3.5	16
89	Strain and stress mapping by mechanochemical activation of spiropyran in poly(methyl methacrylate). <i>Strain</i> , 2019 , 55, e12310	1.7	16

88	Manufacturing of unidirectional glass/epoxy prepreg with microencapsulated liquid healing agents. <i>Composites Science and Technology</i> , 2017 , 153, 190-197	8.6	15
87	Core-Shell Microcapsules Containing Flame Retardant Tris(2-chloroethyl phosphate) for Lithium-Ion Battery Applications. <i>ACS Omega</i> , 2018 , 3, 1609-1613	3.9	15
86	Repeated healing of delamination damage in vascular composites by pressurized delivery of reactive agents. <i>Composites Science and Technology</i> , 2017 , 151, 1-9	8.6	15
85	Strategies for Volumetric Recovery of Large Scale Damage in Polymers. <i>Advanced Functional Materials</i> , 2016 , 26, 4561-4569	15.6	15
84	A Robust Patterning Technique for Electron Microscopy-Based Digital Image Correlation at Sub-Micron Resolutions. <i>Experimental Mechanics</i> , 2019 , 59, 1063-1073	2.6	14
83	Interfacial Force-Focusing Effect in Mechanophore-Linked Nanocomposites. <i>Advanced Science</i> , 2020 , 7, 1903464	13.6	14
82	The effect of residual stresses and sample preparation on progressive debonding during the fiber push-out test. <i>Composites Science and Technology</i> , 1998 , 58, 1741-1751	8.6	14
81	A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials. <i>Journal of Computational Physics</i> , 2016 , 318, 373-390	4.1	14
8o	Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 82, 170-179	8.4	14
79	Manufacture of carbon-fiber prepreg with thermoplastic/epoxy resin blends and microencapsulated solvent healing agents. <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 121, 365-375	8.4	13
78	Shock Wave Energy Dissipation in Catalyst-Free Poly(dimethylsiloxane) Vitrimers. <i>Macromolecules</i> , 2020 , 53, 4741-4747	5.5	13
77	Effect of microchannels on the crashworthiness of fiber-reinforced composites. <i>Composite Structures</i> , 2018 , 184, 428-436	5.3	13
76	A hybrid experimental/numerical approach to characterize interfacial adhesion in multilayer low-library thin film specimens. <i>Thin Solid Films</i> , 2010 , 519, 337-344	2.2	13
75	Micro-interferometry for measurement of thermal displacements at fiber/matrix interfaces. <i>Experimental Mechanics</i> , 1991 , 31, 98-103	2.6	13
74	Digital Texture Voxels for Stretchable Morphing Skin Applications. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900260	6.8	12
73	Triggered Transience of Plastic Materials by a Single Electron Transfer Mechanism. <i>ACS Central Science</i> , 2020 , 6, 266-273	16.8	12
72	Tracking capsule activation and crack healing in a microcapsule-based self-healing polymer. <i>Scientific Reports</i> , 2019 , 9, 17773	4.9	12
71	Self-healing of impact damage in fiber-reinforced composites. <i>Composites Part B: Engineering</i> , 2019 , 173, 106808	10	11

(2021-2020)

70	Grand challenges in the design and manufacture of vascular self-healing. <i>Multifunctional Materials</i> , 2020 , 3, 013001	5.2	11
69	Thermal strain measurement in sol-gel lead zirconate titanate thin films. <i>Journal of Applied Physics</i> , 2009 , 106, 123501	2.5	11
68	Photothermal Initiation of Frontal Polymerization Using Carbon Nanoparticles. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4690-4696	4.3	11
67	Autonomous Strategies for Improved Performance and Reliability of Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003139	21.8	11
66	Direct Detection of Manganese Ions in Organic Electrolyte by UV-vis Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A345-A348	3.9	9
65	Self-Healing Epoxies and Their Composites 2013 , 361-380		9
64	In situdisplacement measurements and numerical predictions of embedded SMA transformation. <i>Smart Materials and Structures</i> , 2000 , 9, 701-710	3.4	9
63	The Effects of Interphase Properties on Interfacial Shear Strength in Polymer Matrix Composites 1994 , 45, 105-124		9
62	Cross-Linking Agents for Enhanced Performance of Thermosets Prepared via Frontal Ring-Opening Metathesis Polymerization. <i>Macromolecules</i> , 2020 , 53, 8360-8366	5.5	9
61	Photoexcitation of Grubbs Second-Generation Catalyst Initiates Frontal Ring-Opening Metathesis Polymerization. <i>ACS Macro Letters</i> , 2020 , 9, 1563-1568	6.6	9
60	Rapid synchronized fabrication of vascularized thermosets and composites. <i>Nature Communications</i> , 2021 , 12, 2836	17.4	9
59	Time Release of Encapsulated Additives for Enhanced Performance of Lithium-Ion Batteries. <i>ACS Applied Materials & District Applied & District Appli</i>	9.5	8
58	Effect of Polymerized Ionic Liquid Structure and Morphology on Shockwave Energy Dissipation. <i>ACS Macro Letters</i> , 2019 , 535-539	6.6	8
57	Shock-Induced Ordering in a Nano-segregated Network-Forming Ionic Liquid. <i>Journal of the American Chemical Society</i> , 2015 , 137, 16000-3	16.4	8
56	Self-Healing Polymers 2010 ,		8
55	A spectral scheme for the simulation of dynamic mode 3 delamination of thin films. <i>Engineering Fracture Mechanics</i> , 2005 , 72, 1866-1891	4.2	8
54	Spontaneous Patterning during Frontal Polymerization. ACS Central Science, 2021, 7, 603-612	16.8	8
53	Survey of Catalysts for Frontal Ring-Opening Metathesis Polymerization. <i>Macromolecules</i> , 2021 , 54, 51	1 <i>7</i> 5. §12	38

52	Energy Absorption Behavior of Polyurea Under Laser-Induced Dynamic Mixed-Mode Loading. <i>Journal of Dynamic Behavior of Materials</i> , 2016 , 2, 379-390	1.8	8
51	Controlling Expansion in Lithium Manganese Oxide Composite Electrodes via Surface Modification. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2357-A2362	3.9	7
50	Interfacial adhesive properties between a rigid-rod pyromellitimide molecular layer and a covalent semiconductor via atomistic simulations. <i>ACS Applied Materials & District Science</i> , 2013 , 5, 4702-11	9.5	7
49	Predictions of Static Displacements in 1-3 Piezocomposites. <i>Journal of Intelligent Material Systems and Structures</i> , 1995 , 6, 169-180	2.3	7
48	Measurement of surface displacements in 1-3 and 1-1-3 piezocomposites. <i>Journal of Applied Physics</i> , 1996 , 79, 1707-1712	2.5	7
47	In Situ Strain Measurement in Solid-State Li-Ion Battery Electrodes. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 010516	3.9	7
46	Enhanced Mixing of Microvascular Self-Healing Reagents Using Segmented Gas-Liquid Flow. <i>ACS Applied Materials & Applied & App</i>	9.5	7
45	Force-Modulated Equilibria of MechanophoreMetal Coordinate Bonds. <i>Chemistry of Materials</i> , 2020 , 32, 3869-3878	9.6	6
44	The effect of interfacial properties on damage evolution in model composites. <i>Polymer Composites</i> , 2005 , 26, 241-246	3	6
43	Residual Stress Development during Relamination of Woven Composite Circuit Boards. <i>Journal of Composite Materials</i> , 2001 , 35, 905-927	2.7	6
42	Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 46226-46232	9.5	6
41	Processing-dependent mechanical properties of solvent cast cyclic polyphthalaldehyde. <i>Polymer</i> , 2019 , 162, 29-34	3.9	6
40	A Microvascular System for the Autonomous Regeneration of Large Scale Damage in Polymeric Coatings . <i>Advanced Engineering Materials</i> , 2017 , 19, 1700319	3.5	5
39	Electropolymerization of Microencapsulated 3-hexylthiophene for Lithium-Ion Battery Applications. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A373-A377	3.9	5
38	High temperature fiber pushout of pristine and transversely fatigued SiC/Ti-6-4. <i>Journal of Materials Science</i> , 1999 , 34, 3471-3478	4.3	5
37	A design for optimizing the hydrostatic performance of 1B piezocomposites. <i>Ferroelectrics, Letters Section</i> , 1996 , 21, 41-46	0.5	5
36	A parametric study of laser induced thin film spallation 2002 , 42, 74		5
35	Nanoscale mechanical tailoring of interfaces using self-assembled monolayers. <i>Mechanics of Materials</i> , 2016 , 98, 71-80	3.3	5

(2021-2016)

34	Automatic Optical Crack Tracking for Double Cantilever Beam Specimens. <i>Experimental Techniques</i> , 2016 , 40, 937-945	1.4	5
33	Fabrication of pH-responsive monodisperse microcapsules using interfacial tension of immiscible phases. <i>Soft Matter</i> , 2020 , 16, 5139-5147	3.6	5
32	Cathode/Electrolyte Interface-Dependent Changes in Stress and Strain in Lithium Iron Phosphate Composite Cathodes. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2707-A2714	3.9	4
31	Simultaneous Observation of Phase-Stepped Images for Photoelasticity Using Diffraction Gratings. <i>Experimental Mechanics</i> , 2013 , 53, 1343-1355	2.6	4
30	Damage Detection: Autonomous Indication of Mechanical Damage in Polymeric Coatings (Adv. Mater. 11/2016). <i>Advanced Materials</i> , 2016 , 28, 2275-2275	24	4
29	Crystal Structure, Thermal Properties, and Shock-Wave-Induced Nucleation of 1,2-Bis(phenylethynyl)benzene. <i>Crystal Growth and Design</i> , 2016 , 16, 6148-6151	3.5	4
28	Recent Advances in Self-Healing Materials Systems247-260		3
27	Residual Stress Effects in Ferroelectric Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 784, 321		3
26	A Novel Technique for Mixed-mode Thin Film Adhesion Measurement. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 750, 1		3
25	Transient Thermal Deformations of the Interphase in Polymer Composites 1995 , 53, 69-78		3
24	Rapid multiple-front polymerization of fiber-reinforced polymer composites. <i>Composites Part A:</i> Applied Science and Manufacturing, 2022 , 106931	8.4	3
23	Regenerative Polymeric Coatings Enabled by Pressure Responsive Surface Valves . <i>Advanced Engineering Materials</i> , 2017 , 19, 1700308	3.5	2
22	Localization of Spiropyran Activation. <i>Langmuir</i> , 2020 , 36, 5847-5854	4	2
21	Biomimetics: Restoration of Impact Damage in Polymers via a Hybrid MicrocapsuleMicrovascular Self-Healing System (Adv. Funct. Mater. 2/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870012	15.6	2
20	Self-Healing Circuits: Autonomic Restoration of Electrical Conductivity (Adv. Mater. 3/2012). <i>Advanced Materials</i> , 2012 , 24, 397-397	24	2
19	Anisotropic Foams Via Frontal Polymerization. <i>Advanced Materials</i> , 2021 , e2105821	24	2
18	The Influence of the Fiber/Matrix Interface on Local Glass Transition Temperature. <i>Studies in Polymer Science</i> , 1992 , 11, 339-358		2
17	Single carbon fiber transverse electrical resistivity measurement via the van der Pauw method. Journal of Applied Physics, 2021 , 130, 115105	2.5	2

16	Self-Regulative Direct Ink Writing of Frontally Polymerizing Thermoset Polymers. <i>Advanced Materials Technologies</i> ,2200230	6.8	2
15	Effects of interface roughness on cohesive strength of self-assembled monolayers. <i>Applied Surface Science</i> , 2017 , 397, 192-198	6.7	1
14	A polarization reconfigurable microstrip patch antenna using liquid metal microfluidics. <i>Smart Materials and Structures</i> , 2020 , 29, 045032	3.4	1
13	Hybrid Materials: Three-Dimensional Microvascular Fiber-Reinforced Composites (Adv. Mater. 32/2011). <i>Advanced Materials</i> , 2011 , 23, 3653-3653	24	1
12	Dynamic surface displacement measurement in 1-3 and 1-1-3 piezocomposites. <i>Journal of Applied Physics</i> , 1998 , 84, 5725-5728	2.5	1
11	Mixed-mode failure of thin films using laser-generated shear waves 2003 , 43, 323		1
10	Multi-scale model of effects of roughness on the cohesive strength of self-assembled monolayers. <i>International Journal of Fracture</i> , 2017 , 208, 131-143	2.3	
9	Biopolymers: Multidimensional Vascularized Polymers using Degradable Sacrificial Templates (Adv. Funct. Mater. 7/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 1042-1042	15.6	
8	Transient Electronics: Thermally Triggered Degradation of Transient Electronic Devices (Adv. Mater. 25/2015). <i>Advanced Materials</i> , 2015 , 27, 3782-3782	24	
7	Carbon Black: Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity (Adv. Funct. Mater. 20/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2922-2922	15.6	
6	Letter from the technical editor. Experimental Mechanics, 2003, 43, 371-371	2.6	
5	Acid-Responsive Anticorrosion Microcapsules for Self-Protecting Coatings. <i>Macromolecular Chemistry and Physics</i> ,2100382	2.6	
4	Statistical Analysis of Failure in Polymer Matrix Composites1049-1056		
3	Mechanical Characterization of Synthetic Vascular Materials. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2011 , 291-294	0.3	
2	Autonomous Healing and Indication of Transverse Crack Damage in Carbon Fiber Composite Laminates. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2021 , 1-3	0.3	
1	Sacrificial Cyclic Poly(phthalaldehyde) Templates for Low-Temperature Vascularization of Polymer Matrices. <i>ACS Applied Polymer Materials</i> , 2022 , 4, 479-487	4.3	