
Timo Rieg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/518004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Na+- <scp>d</scp> -glucose Cotransporter SGLT1 is Pivotal for Intestinal Glucose Absorption and Glucose-Dependent Incretin Secretion. Diabetes, 2012, 61, 187-196.	0.3	550
2	SGLT2 Mediates Glucose Reabsorption in the Early Proximal Tubule. Journal of the American Society of Nephrology: JASN, 2011, 22, 104-112.	3.0	429
3	SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. American Journal of Physiology - Renal Physiology, 2014, 306, F194-F204.	1.3	393
4	Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. American Journal of Physiology - Renal Physiology, 2013, 304, F156-F167.	1.3	318
5	Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R75-R83.	0.9	239
6	Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. American Journal of Physiology - Renal Physiology, 2014, 306, F188-F193.	1.3	229
7	Development of SCLT1 and SGLT2 inhibitors. Diabetologia, 2018, 61, 2079-2086.	2.9	212
8	Decreased Renal Organic Anion Secretion and Plasma Accumulation of Endogenous Organic Anions in OAT1 Knock-out Mice. Journal of Biological Chemistry, 2006, 281, 5072-5083.	1.6	204
9	Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiological Genomics, 2008, 33, 180-192.	1.0	203
10	Mice lacking P2Y 2 receptors have saltâ€resistant hypertension and facilitated renal Na + and water reabsorption. FASEB Journal, 2007, 21, 3717-3726.	0.2	160
11	Aldosterone-induced Sgk1 relieves Dot1a-Af9–mediated transcriptional repression of epithelial Na+ channel α. Journal of Clinical Investigation, 2007, 117, 773-783.	3.9	150
12	The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney International, 2007, 72, 566-573.	2.6	143
13	Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. American Journal of Physiology - Renal Physiology, 2012, 303, F963-F971.	1.3	125
14	Paracrine Regulation of the Epithelial Na+ Channel in the Mammalian Collecting Duct by Purinergic P2Y2 Receptor Tone. Journal of Biological Chemistry, 2008, 283, 36599-36607.	1.6	119
15	Sodium-glucose cotransport. Current Opinion in Nephrology and Hypertension, 2015, 24, 463-469.	1.0	117
16	Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. American Journal of Physiology - Renal Physiology, 2008, 294, F867-F873.	1.3	115
17	Requirement of Intact Adenosine A1 Receptors for the Diuretic and Natriuretic Action of the Methylxanthines Theophylline and Caffeine. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 403-409.	1.3	107
18	A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. American Journal of Physiology - Renal Physiology, 2012, 302, F1293-F1299.	1.3	101

#	Article	IF	CITATIONS
19	Dietary Na ⁺ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y ₂ â€receptor tone. FASEB Journal, 2010, 24, 2056-2065.	0.2	92
20	Cardiac-Specific Overexpression of Caveolin-3 Attenuates Cardiac Hypertrophy and Increases Natriuretic Peptide Expression and Signaling. Journal of the American College of Cardiology, 2011, 57, 2273-2283.	1.2	86
21	Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. American Journal of Physiology - Renal Physiology, 2011, 301, F463-F475.	1.3	86
22	Adenylate Cyclase 6 Determines cAMP Formation and Aquaporin-2 Phosphorylation and Trafficking in Inner Medulla. Journal of the American Society of Nephrology: JASN, 2010, 21, 2059-2068.	3.0	83
23	Thiazolidinedione-Induced Fluid Retention Is Independent of Collecting Duct αENaC Activity. Journal of the American Society of Nephrology: JASN, 2009, 20, 721-729.	3.0	75
24	Organic Anion Transporter 3 Contributes to the Regulation of Blood Pressure. Journal of the American Society of Nephrology: JASN, 2008, 19, 1732-1740.	3.0	72
25	Adenosine A ₁ Receptors Determine Glomerular Hyperfiltration and the Salt Paradox in Early Streptozotocin Diabetes Mellitus. Nephron Physiology, 2009, 111, p30-p38.	1.5	72
26	What does sodiumâ€glucose coâ€ŧransporter 1 inhibition add: Prospects for dual inhibition. Diabetes, Obesity and Metabolism, 2019, 21, 43-52.	2.2	69
27	Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. American Journal of Physiology - Renal Physiology, 2010, 299, F1365-F1373.	1.3	68
28	β1-Integrin is required for kidney collecting duct morphogenesis and maintenance of renal function. American Journal of Physiology - Renal Physiology, 2009, 297, F210-F217.	1.3	67
29	Purinergic Inhibition of ENaC Produces Aldosterone Escape. Journal of the American Society of Nephrology: JASN, 2010, 21, 1903-1911.	3.0	62
30	Functional Maturation of Drug Transporters in the Developing, Neonatal, and Postnatal Kidney. Molecular Pharmacology, 2011, 80, 147-154.	1.0	59
31	Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflugers Archiv European Journal of Physiology, 2004, 448, 214-221.	1.3	58
32	Adenylyl Cyclase 6 Enhances NKCC2 Expression and Mediates Vasopressin-Induced Phosphorylation of NKCC2 and NCC. American Journal of Pathology, 2013, 182, 96-106.	1.9	58
33	Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney International, 2017, 92, 397-414.	2.6	51
34	ATP and adenosine in the local regulation of water transport and homeostasis by the kidney. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R419-R427.	0.9	50
35	Rapid Aldosterone-Mediated Signaling in the DCT Increases Activity of the Thiazide-Sensitive NaCl Cotransporter. Journal of the American Society of Nephrology: JASN, 2019, 30, 1454-1470.	3.0	49
36	A High-throughput Method for Measurement of Glomerular Filtration Rate in Conscious Mice. Journal of Visualized Experiments, 2013, , e50330.	0.2	46

#	Article	IF	CITATIONS
37	P2Y ₂ receptor activation decreases blood pressure and increases renal Na ⁺ excretion. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R510-R518.	0.9	43
38	Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. American Journal of Physiology - Renal Physiology, 2015, 308, F1409-F1420.	1.3	40
39	P2Y receptors and kidney function. Environmental Sciences Europe, 2012, 1, 731-742.	2.6	38
40	Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1186-R1191.	0.9	35
41	Pharmacological Npt2a Inhibition Causes Phosphaturia and Reduces Plasma Phosphate in Mice with Normal and Reduced Kidney Function. Journal of the American Society of Nephrology: JASN, 2019, 30, 2128-2139.	3.0	30
42	Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. Laboratory Investigation, 2016, 96, 98-111.	1.7	29
43	An inducible intestinal epithelial cell-specific NHE3 knockout mouse model mimicking congenital sodium diarrhea. Clinical Science, 2020, 134, 941-953.	1.8	29
44	Kidney function in mice: thiobutabarbital versus ?-chloralose anesthesia. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 320-323.	1.4	24
45	Renal Phosphate Wasting in the Absence of Adenylyl Cyclase 6. Journal of the American Society of Nephrology: JASN, 2014, 25, 2822-2834.	3.0	24
46	Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus. JCI Insight, 2017, 2, e91042.	2.3	21
47	Regulation of nephron water and electrolyte transport by adenylyl cyclases. American Journal of Physiology - Renal Physiology, 2014, 306, F701-F709.	1.3	18
48	Vasopressin regulation of inner medullary collecting ducts and compensatory changes in mice lacking adenosine A ₁ receptors. American Journal of Physiology - Renal Physiology, 2008, 294, F638-F644.	1.3	17
49	<scp>P</scp> 2 <scp>Y</scp> ₂ receptor activation decreases blood pressure via intermediate conductance potassium channels and connexin 37. Acta Physiologica, 2015, 213, 628-641.	1.8	17
50	SGLT2 inhibition effect on salt-induced hypertension, RAAS, and Na ⁺ transport in Dahl SS rats. American Journal of Physiology - Renal Physiology, 2022, 322, F692-F707.	1.3	17
51	Combined Effects of Carbonic Anhydrase Inhibitor and Adenosine A ₁ Receptor Antagonist on Hemodynamic and Tubular Function in the Kidney. Kidney and Blood Pressure Research, 2007, 30, 388-399.	0.9	15
52	Adenosine A1 receptors determine effects of caffeine on total fluid intake but not caffeine appetite. European Journal of Pharmacology, 2007, 555, 174-177.	1.7	15
53	Different actions of protein kinase C isoforms α and ε on gastric acid secretion. British Journal of Pharmacology, 2002, 136, 938-946.	2.7	14
54	Stimulation of serum- and glucocorticoid-regulated kinase-1 gene expression by endothelin-1. Biochemical Pharmacology, 2006, 71, 1175-1183.	2.0	14

#	Article	IF	CITATIONS
55	Ornithine decarboxylase inhibitor eliminates hyperresponsiveness of the early diabetic proximal tubule to dietary salt. American Journal of Physiology - Renal Physiology, 2008, 295, F995-F1002.	1.3	14
56	Adenylyl cyclase 6 is required for maintaining acid–base homeostasis. Clinical Science, 2018, 132, 1779-1796.	1.8	11
57	Adenylyl Cyclase 6 Expression Is Essential for Cholera Toxin–Induced Diarrhea. Journal of Infectious Diseases, 2019, 220, 1719-1728.	1.9	11
58	Enhanced phosphate absorption in intestinal epithelial cellâ€specific NHE3 knockout mice. Acta Physiologica, 2022, 234, e13756.	1.8	11
59	PF-06869206 is a selective inhibitor of renal P _i transport: evidence from in vitro and in vivo studies. American Journal of Physiology - Renal Physiology, 2020, 319, F541-F551.	1.3	10
60	Tubular effects of sodium–glucose cotransporter 2 inhibitors: intended and unintended consequences. Current Opinion in Nephrology and Hypertension, 2020, 29, 523-530.	1.0	9
61	Intestine-Specific NHE3 Deletion in Adulthood Causes Microbial Dysbiosis. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	9
62	Contribution of NHE3 and dietary phosphate to lithium pharmacokinetics. European Journal of Pharmaceutical Sciences, 2019, 128, 1-7.	1.9	8
63	Analysis and validation of traits associated with a single nucleotide polymorphism Gly364Ser in catestatin using humanized chromogranin A mouse models. Journal of Hypertension, 2016, 34, 68-78.	0.3	7
64	Connecting type A intercalated cell metabolic state to V-ATPase function: phosphorylation does matter!. American Journal of Physiology - Renal Physiology, 2013, 305, F1105-F1106.	1.3	4
65	Reply to "Reduced NHE3 activity results in congenital diarrhea and can predispose to inflammatory bowel disease― American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R312-R312.	0.9	4
66	Body mass-specific Na+-K+-ATPase activity in the medullary thick ascending limb: implications for species-dependent urine concentrating mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R563-R573.	0.9	4
67	Genetic deletion of connexin 37 causes polyuria and polydipsia. PLoS ONE, 2020, 15, e0244251.	1.1	3
68	NHE3 in the thick ascending limb is required for sustained but not acute furosemide-induced urinary acidification. American Journal of Physiology - Renal Physiology, 2022, 323, F141-F155.	1.3	2
69	Holding tight and staying true: generation of a new tamoxifen-inducible, principal cell-specific mouse. American Journal of Physiology - Renal Physiology, 2018, 314, F932-F933.	1.3	1
70	Urinary concentration is impared in mice lacking adenylyl cyclase 6. FASEB Journal, 2009, 23, 970.10.	0.2	1
71	Regulation of Intestinal SGLT1 by Catestatin in Hyperleptinemic Type 2 Diabetic Mice. FASEB Journal, 2015, 29, 970.9.	0.2	1
72	Intestinal epithelialâ€specific NHE3 knockout causes metabolic acidosis. FASEB Journal, 2018, 32, 747.13.	0.2	1

#	Article	IF	CITATIONS
73	Npt2a as a target for treating hyperphosphatemia. Biochemical Society Transactions, 2022, 50, 439-446.	1.6	1
74	Unravelling a role for KCNQ1 in K ⁺ recycling and gastric acid secretion. Journal of Physiology, 2009, 587, 4149-4150.	1.3	0
75	DOCA unmasks saltâ€sensitivity of blood pressure in mice lacking P2Y 2 receptors. FASEB Journal, 2008, 22, 735.4.	0.2	0
76	Collecting ductâ€specific gene inactivation of αENaC in the mouse kidney does not attenuate rosiglitazoneâ€induced weight gain. FASEB Journal, 2008, 22, 947.14.	0.2	0
77	Unmasking hyperactive ENaC in P2Y2 â€∤―mice as a molecular mechanism for their hypertension. FASEB Journal, 2009, 23, 602.1.	0.2	0
78	SGLT2 mediates glucose reabsorption in the early proximal tubule. FASEB Journal, 2010, 24, 606.15.	0.2	0
79	Lack of SGLT1 enhances renal oxidative stress, reduces kidney weight, and blunts diabetic glomerular hyperfiltration. FASEB Journal, 2011, 25, 1038.2.	0.2	0
80	Adenylyl cyclase 6 determines AVPâ€induced membrane abundance and phosphorylation of NKCC2 and NCC. FASEB Journal, 2012, 26, 1152.7.	0.2	0
81	Leptin receptor deficiency causes intestinal hyperplasia and altered membrane abundance of glucose transporters. FASEB Journal, 2012, 26, 1109.2.	0.2	0
82	Impaired Regulation of Renal K Elimination in Mice Lacking SGLT1. FASEB Journal, 2012, 26, 1068.16.	0.2	0
83	Secondary hyperparathyroidism and impaired renal phosphate excretion in mice lacking adenylyl cyclase 6. FASEB Journal, 2012, 26, .	0.2	0
84	Leptin but not its long form receptor regulates intestinal membrane expression of sodium/glucose transporterâ€1 and intestinal hyperplasia. FASEB Journal, 2013, 27, 1210.13.	0.2	0
85	Renal Caffeine Effects are Independent of NHE3 Abundance, Trafficking or Phosphorylation. FASEB Journal, 2015, 29, 970.4.	0.2	0
86	Role of NHE3 in renal calcium handling. FASEB Journal, 2018, 32, .	0.2	0
87	Inducible intestinal epithelial cellâ€specific NHE3 knockout causes diarrhea and more alkaline luminal content. FASEB Journal, 2018, 32, 747.2.	0.2	0
88	Body Massâ€Specific Na, Kâ€ATPase Activity in the Medullary Thick Ascending Limb – Implications for Speciesâ€Dependent Urine Concentrating Mechanisms. FASEB Journal, 2018, 32, 862.3.	0.2	0
89	Connexin 37 contributes to water homeostasis and urinary concentrating ability. FASEB Journal, 2019, 33, 575.6.	0.2	0
90	In vivo effects of renal Npt2a inhibition. FASEB Journal, 2019, 33, 751.2.	0.2	0

		TIMO RIEG		
#	Article	IF	CITATIONS	
91	<i>In vitro</i> effects of Npt2a inhibition in renal proximal tubule cells. FASEB Journal, 2020, 34, 1-1.	0.2	Ο	